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Abstract

Mesenchymal stem/stromal cells (MSCs) have been demonstrated to hold great potential for the treatment
of several diseases. Their therapeutic effects are largely mediated by paracrine factors including exosomes,
which are nanometer-sized membrane-bound vesicles with functions as mediators of cell-cell communication. MSC-
derived exosomes contain cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. Increasing
evidence suggests that MSC-derived exosomes might represent a novel cell-free therapy with compelling advantages
over parent MSCs such as no risk of tumor formation and lower immunogenicity. This paper reviews the characteristics of
MSC exosomes and their fate after in vivo administration, and highlights the therapeutic potential of MSC-derived
exosomes in liver, kidney, cardiovascular and neurological disease. Particularly, we summarize the recent clinical trials
performed to evaluate the safety and efficacy of MSC exosomes. Overall, this paper provides a general overview of MSC-
exosomes as a new cell-free therapeutic paradigm.
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Background
Mesenchymal stem/stromal cells (MSCs) are one of the
most commonly employed cell types as a cell-based ther-
apy for treating human diseases. Recently, several mech-
anisms have been put forward regarding the therapeutic
potential of MSCs, including (1) paracrine factors in-
volving proteins/peptides and hormones and (2) the
transfer of exosomes/microvesicles packaging various
molecules [1]. The therapeutic potential of mesenchymal
stromal cells (MSCs) may be largely mediated by para-
crine factors contained in vesicles [2]. Extracellular vesi-
cles (EVs) from many cell sources have now been
recognized as important messengers in intercellular
communication via transfer of bioactive lipids, proteins,
and RNAs. EVs are generally divided into 3 subgroups
depending on their biogenesis; (a) exosomes, with a
diameter of 40–150 nm, which are released into the
extracellular when multivesicular bodies fuse with the
cell membrane, (b) microvesicles, with a diameter of
150–1000 nm, originating from direct budding of the

plasma membrane and finally (c) apoptotic bodies,
which display a broad size distribution (50–2000 nm)
[3]. Exosomes are crucial messengers that present in bio-
logical fluids and are involved in multiple physiological
and pathological processes [4]. Today, there are hun-
dreds of clinics and hundreds of clinical trials using hu-
man MSCs with very few, if any, focusing on the in vitro
multipotential capacities of these cells, these cells home
in on sites of injury or disease and secrete bioactive fac-
tors that are immunomodulatory and trophic (regenera-
tive) [5]. One advantage of using exosomes is to get
around MSCs’ side effects, exosomes are nanoparticles
that can penetrate blood brain barrier and avoid poten-
tial pulmonary embolism related to transplantation of
MSCs [6]. Knowledge of exosomes is essential to shed
light on the functions of these vesicles on clinical appli-
cations. In this review, we focus on the mechanisms of
exosomes covering the current knowledge on their
potential cell-free therapeutic applications for
MSC-derived exosomes.

Exosomes
Exosomes are a family of nanoparticles with a diameter
in the range of 40–150 nm that are generated inside
multivesicular bodies (MVBs) and are secreted when

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: wangshihua@ibms.pumc.edu.cn;
zhaochunhua@ibms.pumc.edu.cn
1Center of Excellence in Tissue Engineering, Department of cell biology,
Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,
School of Basic Medicine Peking Union Medical College, Beijing, China
Full list of author information is available at the end of the article

Yin et al. Biomarker Research             (2019) 7:8 
https://doi.org/10.1186/s40364-019-0159-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-019-0159-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:wangshihua@ibms.pumc.edu.cn
mailto:zhaochunhua@ibms.pumc.edu.cn


these compartments fuse with the plasma membrane
[7]. Upon the fusion of MVBs with the plasma mem-
brane, exosomes are released into the extracellular and
can be either taken up by target cells residing in the
microenvironment or carried to distant sites via bio-
logical fluids [8]. Exosomes are enriched in many bio-
active molecules such as lipids, proteins, mRNAs,
transfer RNA (tRNA), long noncoding RNAs (lncRNAs),
microRNAs (miRNAs) and mitochondrial DNA
(mtDNA) [9]. Most exosomes have an evolutionarily
conserved set of proteins including tetraspanins (CD81,
CD63, and CD9), heat-shock proteins (HSP60, HSP70
and HSP90), ALIX and tumor susceptibility gene 101
(TSG101); however, they also have unique tissue
type-specific proteins that reflect their cellular sources
[10]. It has been reported that exosomes may be released
from multiple cell types, including immunocytes [11],
tumor cells [12], and mesenchymal stem/stromal cells
(MSCs) [13]. Exosomes have received the most attention
and have been implicated in physiological functions and
in pathological conditions. Exosomes released by malig-
nant cells play an important role in cancer cell commu-
nication with their microenvironment. HCC cell
HepG2-derived exosomes could be actively internalized
by adipocytes and caused significant transcriptomic alter-
ations and in particular induced an inflammatory pheno-
type in adipocytes [14]. Exosomal miRNAs can affect
many aspects of physiological and pathological conditions
in HCC and indicates that miRNAs in exosomes can not
only serve as sensitive biomarkers for cancer diagnostics
and recurrence but can also potentially be used as thera-
peutics to target HCC progression [15].

Characteristics of MSC-derived exosomes
The abundance of cargos identified from MSC-derived
exosomes function largely via the constant transfer of
miRNAs and proteins, > 150 miRNAs [16] and > 850
unique protein [17] have been identified in the cargo of
MSC-derived exosomes, resulting in the alteration of a
variety of activities in target cells via different pathways.
Many miRNAs have been found in MSC-derived exo-
somes and are reportedly involved in both physiological
and pathological processes such as organism development,
epigenetic regulation, immunoregulation (miR-155 and
miR-146) [18], tumorigenesis and tumor progression
(miR-23b, miR-451, miR-223, miR-24, miR-125b, miR-31,
miR-214, and miR-122) [19]. Over 900 species of proteins
have been collected from MSC-derived exosomes accord-
ing to ExoCarta. Several studies have also shown that exo-
somes derived from MSCs harbor cytokines and growth
factors, such as TGFβ1, interleukin-6 (IL-6), IL-10, and
hepatocyte growth factor (HGF), which have been proven
to contribute to immunoregulation [20]. Comparable
levels of VEGF, extracellular matrix metalloproteinase

inducer (EMMPRIN), and MMP-9 have been reported in
MSC-derived exosomes, these three proteins play a vital
role in stimulating angiogenesis, which could be funda-
mental for tissue repair [21].

The fate of injected MSC-derived exosomes
Current knowledge of the biodistribution of EVs upon
administration in animal models is limited. Do
MSC-derived exosomes have a favorable biodistribution
and pharmacokinetic profile? Several strategies have
been employed for in vivo tracking to determine EVs
biodistribution upon systemic delivery in different ani-
mal models [22, 23]. Near-infrared (NIR) dyes are ideal
for in vivo applications due to their high signal/noise ra-
tio [24]. EVs with superparamagnetic iron oxide nano-
particles for high resolution and sensitive magnetic
resonance analysis provide for accurate detection also in
deep organs [25]. In an intracerebral hemorrhage rat
model, DiI-labeled MSC-derived exosomes reached
brain, liver, lung, and spleen after intravenous injection
[26]. Exosomes appear to be able to home to the injury
site. In the mouse model of acute kidney injury (AKI),
DiD-labeled EVs were accumulated specifically in the
kidneys of mice with AKI compared with healthy con-
trols [27]. Intranasal administration led to better brain
accumulation of exosomes at the injured brain site, com-
pared to i.v. injection [28]. Biodistribution of systemic-
ally administered EVs is a dynamic process: a rapid
phase of distribution in liver, spleen, and lungs within
approximately 30 min upon administration is followed
by an elimination phase via hepatic and renal processing,
removing EVs in 1 to 6 h after administration [29].

Therapeutic effects of MSC-derived exosomes
Liver diseases
The application of MSCs in animal models of liver fibro-
sis/cirrhosis and acute liver injury, eventually, in patients
ameliorates the progress of the disease. Li et al. found
that the exosomes derived from human umbilical cord
MSCs (hucMSC) ameliorate liver fibrosis by inhibiting
both the epithelial-mesenchymal transition of hepato-
cytes and collagen production, significantly restore the
serum aspartate aminotransferase activity and inactivate
the TGF-β1/Smad2 signaling pathway by decreasing col-
lagen type I/III and TGF-β1 and the phosphorylation of
Smad2 [30]. Tan et al. found that HuES9.E1
MSC-derived exosomes elicit hepatoprotective effects
through an increase in hepatocyte proliferation, as dem-
onstrated by high expression of proliferation proteins
(proliferating cell nuclear antigen and Cyclin D1), the
anti-apoptotic gene Bcl-xL and the signal transducer and
activator of transcription 3 (STAT3) [31]. Liver regener-
ation was significantly stimulated by MSCs culture
medium (MSC-CM) as shown by an increase in liver to
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body weight ratio and hepatocyte proliferation.
MSC-CM upregulated hepatic gene expression of cyto-
kines and growth factors relevant for cell proliferation,
angiogenesis, and anti-inflammatory responses, treat-
ment with MSC-derived factors can promote hepatocyte
proliferation and regenerative responses in the early
phase after surgical resection [32]. Transplantation of
exosomes released from adipose derived-MSCs
(AD-MSC) can significantly reduce the elevated serum
levels of alanine aminotransferase and aspartate amino-
transferase, liver inflammation and necrosis in concanav-
alin A (Con A)-induced hepatitis in C57BL/6 mice as
well as the serum levels of proinflammatory cytokines,
including tumor necrosis factor-α (TNF-α), interferon-γ
(IFN-γ), IL-6, IL-18 and IL-1β, and the inflammasome
activation in mouse liver [33].

Kidney disease
Mesenchymal stem/stromal cells (MSCs) have shown
promising results in experimental acute kidney injury
(AKI) and chronic kidney disease (CKD). Systemic
administration of human umbilical cord-derived MSCs
(huMSCs)-derived EVs in rats with renal
Ischemia-reperfusion injury (IRI) increased renal capil-
lary density and reduced fibrosis by direct transfer of the
proangiogenic factor vascular endothelial growth factor
(VEGF) and mRNAs involved in this process [34]. A sin-
gle intrarenal administration of adipose tissue-derived
autologous MSCs-derived EVs in pigs with renal artery
stenosis attenuated renal inflammation, disclosed by de-
creased renal vein levels of several pro-inflammatory cy-
tokines, including TNF-α, IL-6, and IL-1-β. Contrarily,
renal vein levels of IL-10 increased in EV-treated pigs,
associated with a shift from pro-inflammatory to repara-
tive macrophages populating the stenotic kidney, under-
scoring the immunomodulatory potential of EVs [35].
Microvesicles derived from human bone marrow MSCs
stimulated proliferation in vitro and conferred resistance
of tubular epithelial cells to apoptosis. In vivo, microve-
sicles accelerated the morphologic and functional recov-
ery of glycerol-induced acute kidney injury (AKI) in
SCID mice by inducing proliferation of tubular cells.
Microarray analysis and quantitative real time PCR of
microvesicle-RNA extracts indicate that microvesicles
shuttle a specific subset of cellular mRNA, such as
mRNAs associated with the mesenchymal phenotype
and with control of transcription, proliferation, and im-
munoregulation [36]. The effects of bone marrow
MSCs-derived MVs in SCID mice survival in lethal
cisplatin-induced acute renal injury (AKI) was to exert a
pro-survival effect on renal cells in vitro and in vivo
mainly ascribed to an anti-apoptotic effect of MVs. MVs
up-regulated in cisplatin-treated human tubular epithe-
lial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and

BIRC8 and down-regulated genes that have a central
role in the execution-phase of cell apoptosis such as
Casp1, Casp8 and LTA [37]. Intravenous injection of
EVs isolated from the conditioned medium of human
umbilical cord MSCs after unilateral renal ischemia pre-
served kidney function and decreased serum levels of
the AKI marker neutrophil gelatinase-associated lipoca-
lin [38]. Human bone marrow MSCs-derived exosomes
contain insulin-like growth factor-1 receptor (IGF-1R)
mRNA. Exosomal transfer of IGF-1R mRNA to damaged
renal tubular cells promoted their proliferation and re-
pair and this effect was significantly reduced when
IGF-1R transcription in donor cells was silenced [39].

Cardiovascular disease
There are preclinical studies in which MSC-derived
exosomes are used for treating cardiovascular diseases
(CVDs) such as AMI, stroke, pulmonary hypertension,
and septic cardiomyopathy [40]. Cui et al. demon-
strated adipose-derived MSC (AdMSC)-derived exo-
somes led to a markedly increase in cell viability of
H9C2 cells under hypoxia/reoxygenation (H/R) in
vitro, and administration of AdMSC-derived exosomes
protected ischemic myocardium from myocardial
ischemia-reperfusion (MI/R) injury via activation of
Wnt/β-catenin signaling in vivo [41]. Furthermore,
Wang et al. showed superior cardioprotective effects
of endometrium-derived MSCs (EmMSC) in a rat
myocardial infarction (MI) model as compared to
BMSCs and AdMSCs. These differences may be
caused by certain miRNAs particularly miR-21 enrich-
ment in exosomes secreted from EmMSCs, which
exerted effects on cell survival and angiogenesis by
targeting PTEN [42]. HuES9.E1 derived MSCs-derived
exosomes treatment increased levels of ATP and
NADH, decreased oxidative stress, increased
phosphorylated-Akt and phosphorylated-GSK-3β, re-
duced phosphorylated-c-JNK in ischemic/reperfused
hearts to enhance myocardial viability and prevented
adverse remodeling after myocardial ischemia/reperfu-
sion injury [43]. Feng et al. determined that miR-22 is
highly enriched in exosomes secreted by mouse bone
marrow-derived MSCs after ischemic preconditioning,
and administration of these exosomes significantly re-
duced infarct size and cardiac fibrosis by targeting
methyl-CpG-binding protein 2 (Mecp2) in a mouse
myocardial infarction (MI) model [44]. Both bone
marrow MSCs and their derived exosomes are cardio-
protective against myocardial infarction in animal
models. However, anti-miR-125b treatment of exo-
somes significantly attenuated their protective effect
[45]. MiR-21-5p plays a key role in hMSC-exo–medi-
ated effects on cardiac contractility and calcium hand-
ling, likely via PI3K signaling [46]. In a rat myocardial
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ischaemia reperfusion injury model, injection of bone
marrow-derived MSCs-derived exosomes reduced
apoptosis and myocardial infarct size and subse-
quently improved heart functions by inducing cardio-
myocyte autophagy via AMPK/mTOR and Akt/mTOR
pathways [47].

Neurological disease
MSC-Exosomes have shown potential therapeutic
benefit in the treatment of neurological and neurode-
generative diseases. One of the most outstanding re-
sults in the field is the fact that systemically injected
exosomes are able to cross the blood-brain barrier
(BBB) and achieve the brain parenchyma. Systemic
delivery of targeted exosomes containing a siRNA
against α-synuclein reduced the mRNA and protein
levels of α-synuclein in the brain [48, 49]. Xin et al.
also reported that rat bone marrow derived MSCs de-
rived EVs enriched with the miR-17-92 cluster en-
hanced oligodendrogenesis neurogenesis neural
plasticity and functional recovery after stroke possibly
by suppressing PTEN and subsequently by increasing
the phosphorylation of proteins downstream of PTEN
including of the protein kinase B/mechanistic target
of rapamycin/glycogen synthase kinase 3β signaling
pathway [50]. Katsuda et al. used exosomes secreted
from human adipose tissue-derived MSCs that contain

large amounts of neprilysin, the most prominent en-
zyme that degrades β-amyloid peptide in the brain.
Transfer of exosomes into neuroblastoma N2a cells
led to reductions in both secreted and intracellular
β-amyloid peptide levels, which might be a thera-
peutic approach to Alzheimer’s disease [51]. The re-
sults of migration assay and capillary network
formation assay showed that exosomes secreted by
adipose-derived stem cells (ADSCs-Exos) promoted
the mobility and angiogenesis of brain microvascular
endothelial cells (BMECs) after oxygen-glucose
deprivation (OGD) via miR-181b-5p/TRPM7 axis [52].
Injection of exosomes from mouse bone marrow
MSCs could rescue cognition and memory impair-
ment according to results of the Morris water maze
test, reduced plaque deposition, and Aβ levels in the
brain; could decrease the activation of astrocytes and
microglia; could down-regulate proinflammatory cyto-
kines (TNF-α and IL-1β); and could up-regulate
anti-inflammatory cytokines (IL-4 and -10) in AD
mice, as well as reduce the activation of signal trans-
ducer and activator of transcription 3 (STAT3) and
NF-κB in APP/PS1 double transgenic mice [53].

Immune disease Potent immunomodulatory properties
of MSCs-exo has been evaluated. Exosomes have been
observed to play crucial roles in carrying and presenting

Fig. 1 Therapeutic effects of MSC-derived exosomes. Exosomes from MSCs contain multiple proteins, lipids, RNAs (mRNA, miRNA, ncRNA).
Therapeutic effects of MSC-derived exosomes in liver, kidney, cardiovascular, and neurological diseases
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functional MHC-peptide complexes to modulate
tumor-specific T cell activation [54]. Exosomes released
from Bone marrow (BM)-derived MSCs can effectively
ameliorate chronic graft-versus-host disease (cGVHD) in
mice by inhibiting the activation and infiltration of CD4
T cells, reducing pro-inflammatory cytokine production,
as well as improving the generation of IL-10-expressing
Treg and inhibiting Th17 cells [55]. Human multipotent
stromal cells-derived EVs suppress autoimmunity in
models of type 1 diabetes (T1D) and experimental auto-
immune uveoretinitis (EAU). EVs inhibit activation of
antigen-presenting cells and suppress development of T
helper 1 (Th1) and Th17 cells, they also increased ex-
pression of the immunosuppressive cytokine IL-10 and
suppressed Th17 cell development [56]. Human
bone-marrow derived MSCs exosomes promote Tregs
proliferation and immunosuppression capacity by upreg-
ulating suppressive cytokines IL-10 and TGF-β1 in
PBMCs of asthmatic patient [57]. MiR-181c in human
umbilical cord MSCs-derived exosomes is key to
anti-inflammatory effects in burned rat inflammation

model by downregulating the TLR4 signaling pathway
[58] Fig. 1.

Clinical trials of MSCs exosomes–based therapies
The use of MSC-derived EVs for regenerative therapy re-
quires the production and isolation of a suitable quantity
of clinical grade EVs from cultured MSCs [59]. While
complexities surrounding the therapeutic potential of
MSCs exosomes continue to unravel, several clinical
trials (Table 1, data from http://clinicaltrials.gov) have
been completed or are underway in order to evaluate
this therapeutic potential. Among them, determining the
optimal dose, the appropriate time window for exosome
administration and route of administration that achieves
maximal efficacy without adverse effects are the most
important issues to resolve [60]. Improved preclinical
study quality in terms of treatment allocation reporting,
randomization and blinding will accelerate needed pro-
gress towards clinical trials that should assess the feasi-
bility and safety of this therapeutic approach in humans
[61]. For example, MSC-exosomes will be great

Table 1 The function of MSC-derived exosomes

Source of Exosomes Specific Disease Treated Target/Pathway Reference

human umbilical cord MSCs liver fibrosis TGF-β1/Smad2 [30]

HuES9.E1 MSC hepatoprotective effects Cyclin D1, Bcl-xL, STAT3 [31]

adipose derived-MSCs hepatitis TNF-α, IFN-γ, IL-6, IL-18 and IL-1β [33]

human umbilical cord-derived MSCs renal Ischemia-reperfusion injury (IRI) VEGF [34]

adipose tissue-derived autologous MSCs renal artery stenosis TNF-α, IL-6, IL10 and IL-1-β [35]

human bone marrow MSCs acute kidney injury mRNAs [36]

bone marrow MSCs acute renal injury Bcl-xL,Bcl2, BIRC8,Casp1, Casp8 and LTA [37]

human umbilical cord MSCs unilateral renal ischemia lipocalin [38]

bone marrow MSCs acute kidney injury mRNAs [36]

Human bone marrow MSCs damaged renal tubular IGF-1R [39]

adipose-derived MSC myocardial ischemia-reperfusion injury Wnt/β-catenin [41]

endometrium-derived MSCs myocardial infarction miR-21, PTEN [42]

HuES9.E1 derived MSCs myocardial ischemia/reperfusion injury PI3K/Akt [43]

mouse bone marrow-derived MSCs myocardial infarction miR-22, Mecp2 [44]

bone marrow MSCs myocardial infarction miR-125b [45]

human mesenchymal stem cell cardiac contractility miR-21-5p, PI3K [46]

bone marrow-derived MSCs myocardial ischaemia reperfusion injury AMPK/mTOR, Akt/mTOR [47]

rat bone marrow derived MSCs stroke miR-17-92, PTEN [50]

human adipose tissue-derived MSCs Alzheimer’s disease neprilysin [51]

adipose-derived stem cells oxygen-glucose deprivation MicroRNA-181b/TRPM7 [52]

mouse bone marrow MSCs Alzheimer’s disease STAT3, NF-κB [53]

bone marrow derived MSCs chronic graft-versus-host disease Treg, Th17 [55]

human multipotent stromal cells type 1 diabetes, uveoretinitis Th1, Th17 [56]

human bone-marrow derived MSCs asthma IL-10, TGF-β1 [57]

human umbilical cord MSCs inflammation MiR-181c, TLR4 [58]
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biological tools for cancer therapy, it is hopeful to delve
deeper into the potential of MSC-exosomes among can-
cer cells and provide effective treatments with the high-
est safety [62] Table 2.

Conclusions
MSCs most exert their therapeutic effects through the
secretion of factors to reduce cellular injury and en-
hance repair. MSC exosomes probably function in a
similar fashion, namely as a communication vehicle
secreted by MSCs to affect the stromal support func-
tions through the maintenance of a dynamic and
homeostatic tissue microenvironment [63]. MSC exo-
somes may have the versatility and capacity to inter-
act with multiple cell types within the immediate
vicinity and remote areas to elicit appropriate cellular
responses. MSCs through their secreted exosomes tar-
get housekeeping processes to restore tissue homeo-
stasis and enable cells within the tissue to recover,
repair and regenerate. This hypothesis provides a ra-
tionale for the therapeutic efficacy of MSCs and their
secreted exosomes in a wide spectrum of diseases and
rationalizes the additional use of MSC exosomes as
an adjuvant to support and complement other thera-
peutic modalities [64]. Nonetheless, the exact mech-
anism of in vivo action of exogenously administered
exosomes, their biodistribution, pharmacokinetics, and
possibility of targeted delivery are not fully elucidated.
New techniques may help in filling this gap of know-
ledge and further promoting clinical translation of
exosomes-based regenerative therapy [65].
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