Meisner et al. Biomarker Research (2018) 6:3

DOI 10.1186/s40364-018-0117-z Bioma rker Resea rCh

Development of biomarker combinations @
for postoperative acute kidney injury via

Bayesian model selection in a multicenter

cohort study

Allison Meisner', Kathleen F. Kerr', Heather Thiessen-Philbrook? Francis Perry Wilson®?, Amit X. Garg™,
Michael G. Shlipak®, Peter Kavsak’, Richard P. Whitlock®, Steven G. Coca® and Chirag R. Parikh?*'”"

Abstract

Background: Acute kidney injury (AK) is a frequent complication of cardiac surgery. We sought prognostic combinations
of postoperative biomarkers measured within 6 h of surgery, potentially in combination with cardiopulmonary bypass time
(to account for the degree of insult to the kidney). We used data from a large cohort of patients and adapted methods for
developing biomarker combinations to account for the multicenter design of the study.

Methods: The primary endpoint was sustained mild AKI, defined as an increase of 50% or more in serum creatinine over
preoperative levels lasting at least 2 days during the hospital stay. Severe AKI (secondary endpoint) was defined as a serum
creatinine increase of 100% or more or dialysis during hospitalization. Data were from a cohort of 1219 adults undergoing
cardiac surgery at 6 medical centers; among these, 117 developed sustained mild AKI and 60 developed severe AKI. We
considered cardiopulmonary bypass time and 22 biomarkers as candidate predictors. We adapted Bayesian
model averaging methods to develop center-adjusted combinations for sustained mild AKI by (1) maximizing
the posterior model probability and (2) retaining predictors with posterior variable probabilities above 0.5. We
used resampling-based methods to avoid optimistic bias in evaluating the biomarker combinations.

Results: The maximum posterior model probability combination included plasma N-terminal-pro-B-type
natriuretic peptide, plasma heart-type fatty acid binding protein, and change in serum creatinine from
before to 0-6 h after surgery; the median probability combination additionally included plasma interleukin-6. The
center-adjusted, optimism-corrected AUCs for these combinations were 0.80 (95% Cl: 0.78, 0.87) and 0.81 (0.78, 0.87),
respectively, for predicting sustained mild AKI, and 0.81 (0.76, 0.90) and 0.83 (0.76, 0.90), respectively, for predicting
severe AKI. For these data, the Bayesian model averaging methods yielded combinations with prognostic capacity
comparable to that achieved by standard frequentist methods but with more parsimonious models.

Conclusions: Pending external validation, the identified combinations could be used to identify individuals at high risk
of AKl immediately after cardiac surgery and could facilitate clinical trials of renoprotective agents.
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Background

Acute kidney injury (AKI) is a frequent complication of
cardiac surgery (prevalence: 17-49%) and has serious im-
plications for long-term health [1]. AKI is typically diag-
nosed on the basis of an increase in serum creatinine over
preoperative levels, which often does not occur until sev-
eral days after the initial injury. Identifying individuals at
high risk for AKI immediately following surgery could
lead to improved patient outcomes and the development
of novel treatment strategies, and is cited as an important
step in preventing AKI after cardiac surgery [1].

One strategy for identifying individuals at high risk of
AKI after cardiac surgery is to develop a multivariable
prognostic model. With that overarching aim in mind,
our goal was to identify combinations of variables with
strong evidence of prognostic capacity. A first step in
developing such combinations is selecting candidate pre-
dictors. In the setting of cardiac surgery, most clinical
risk factors have modest associations with AKI [2]. One
exception is cardiopulmonary bypass (CPB) time, which
is strongly associated with AKI after cardiac surgery and
has a clear biological relationship with the development
of AKI [3, 4]. In addition to CPB time, several bio-
markers of kidney injury, inflammation, and cardiac
function have been shown to have strong associations
with AKI [5-8]. These biomarkers offer the potential to
identify patients at high risk of AKI after cardiac surgery,
and their application has been encouraged by several
consensus conferences [9].

Table 1 Candidate biomarkers (measured 0-6 h after surgery)
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Although CPB time and several biomarkers are
strongly associated with risk of AKI, their individual
prognostic capacity is modest [5, 6]. However, it may be
possible to construct combinations of these variables
with higher prognostic capacity. Pursuing such a com-
bination is also biologically motivated since CPB time
can be considered to be a measure of the degree of in-
sult to the kidney while the postoperative biomarkers
may reflect the response to this insult. Thus, we used
Bayesian model averaging (BMA) methods to identify
prognostic combinations of postoperative biomarkers
(Table 1) and CPB time in a large, multicenter cohort of
cardiac surgery patients.

Methods

Study population

This is a secondary analysis of the Translational Research
Investigating Biomarker Endpoints in AKI (TRIBE-AKI)
study. This study enrolled adults undergoing coronary ar-
tery bypass graft (CABG) and/or valve surgery at six aca-
demic medical centers in North America between July
2007 and December 2009. Enrollment criteria included in-
creased risk for AKI by any of the following criteria: emer-
gency surgery, preoperative serum creatinine >2 mg/dL,
ejection fraction <35% or grade 3 or 4 left ventricular dys-
function, age >70 years, diabetes mellitus, concomitant
CABG and valve surgery, or repeat revascularization sur-
gery. In addition, individuals with evidence of AKI before
surgery, prior kidney transplantation, preoperative serum

Category Biomarker Abbreviation Source
Biomarkers of kidney injury Kidney injury molecule-1 [11] KIM-1 Urine
Liver fatty acid-binding protein [11] L-FABP Urine
Cystatin C [12] Urine
Albumin [10, 13] Urine
Neutrophil gelatinase-associated lipocalin [5] NGAL Urine, plasma
Interleukin-18 [5] IL-18 Urine
Biomarkers of kidney function Creatinine [5, 14] Cr Urine, serum?
Biomarkers of cardiac function Heart-type fatty acid binding protein [15] h-FABP Plasma
Brain natriuretic peptide [16] BNP Plasma
High-sensitivity troponin T [16] TNTHS Plasma
N-type pro-B-type natriuretic peptide [16] NT-proBNP Plasma
Creatine kinase-MB [16] CKMB Plasma
Troponin | [16] TNI Plasma
Biomarkers of inflammation Interleukin-6 [7] IL-6 Plasma
Interleukin-10 [7] IL-10 Plasma
Monocyte chemotactic protein-1 [17] MCP-1 Plasma
Epidermal growth factor [17] EGF Plasma
Vascular endothelial growth factor [17] VEGF Plasma

@Also considered the change from preoperative serum creatinine to 0-6 h postoperative and the average of preoperative and 0-6 h postoperative serum creatinine
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creatinine level >4.5 mg/dL, or end-stage renal disease
were excluded. All participants provided written informed
consent and each institution’s research ethics board
approved the study.

Sample collection

Urine and EDTA plasma specimens were collected pre-
operatively and daily for up to five postoperative days.
The first postoperative samples were collected soon after
admission to the intensive care unit (0—6 h after sur-
gery). The present investigation considers biomarkers
measured at this time point.

Fresh urine samples were obtained from the urimeter of
the Foley catheter system and were centrifuged to remove
cellular debris. Blood was collected in EDTA tubes and
centrifuged to separate plasma. Urine supernatant and
plasma were aliquoted into bar-coded cryovials and stored
at —80 °C until biomarker measurement. No additives or
protease inhibitors were added. Additional details regard-
ing sample collection and storage were provided in earlier
reports [5].

Biomarkers

We included 15 blood and 7 urine biomarkers in this
study (Table 1), including three variations of serum cre-
atinine: first postoperative (measured 0-6 h after sur-
gery), absolute difference between preoperative and first
postoperative, and average of preoperative and first post-
operative. Biomarker measurements were detailed in
prior publications [5, 7, 10-17].

Outcome definitions

The primary outcome was sustained mild AKI, defined as
an increase of 50% or more in serum creatinine over pre-
operative levels lasting at least 2 days during the hospital
stay. We chose the sustained mild AKI definition to iden-
tify patients most likely to have true kidney injury and to
limit misclassification of controls with isolated elevations
in serum creatinine due to laboratory variation in creatin-
ine assay, volume disturbances, or hemodynamic derange-
ments [18]. We also considered severe AKI, defined as an
increase in serum creatinine of 100% or more or dialysis
during hospitalization, as a secondary outcome. Preopera-
tive serum creatinine, collected within 2 months prior to
surgery, served as baseline. Pre- and postoperative serum
creatinine were measured by the same laboratory for each
patient at all centers.

As a secondary analysis, we considered the outcomes of
death from all causes at 1 year and 3 years after surgery,
which were observed without censoring. We obtained vital
status after discharge through various mechanisms. For
participants living in the United States, we performed
phone calls to patients’ homes, searched the National
Death Index, and reviewed hospital records. For Canadian
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participants, we used phone calls, as well as data held at
the Institute for Clinical Evaluative Sciences (ICES) to ac-
quire vital status. The death status and date of death were
recorded. These datasets were linked using unique,
encoded identifiers and analyzed at ICES.

Statistical methods

Primary analysis

We used BMA methods to identify combinations of bio-
markers and CPB time. All biomarkers were log-
transformed and CPB time was included as a linear
term. Urine biomarkers were not normalized to urine
creatinine, though urine creatinine was included as a
candidate predictor.

BMA involves assigning each variable a prior probabil-
ity of being useful for prediction; these prior variable
probabilities induce a prior probability for each combin-
ation, where the combinations are defined by allowing
CPB time and each biomarker to either be included or
excluded. The method combines these prior probabilities
and the data via Bayes’ theorem to calculate a posterior
probability for each combination (“posterior model
probability”) and a posterior probability for each variable
(“posterior variable probability”) [19-21]. The posterior
model probability is a measure of the degree to which
the model is supported by the data [22]. Similarly, the
posterior variable probability reflects the support in the
data for the variable as a predictor of the outcome [23].
The BMA framework can be used for variable selection
on the basis of posterior model probabilities or posterior
variable probabilities. The BMA approach considers all
possible combinations and applies a “leaps and bounds”
algorithm to identify the most promising combinations
for further consideration; this process provides computa-
tional feasibility for searching the large space of candi-
date models (8,388,608 candidate models given 23
candidate predictors) [19].

In our implementation of BMA, we assigned each
biomarker and CPB time a prior probability of 5, mean-
ing that each predictor was a priori as likely to be in the
model as not. It is possible to incorporate prior informa-
tion into these probabilities, but we elected to treat all of
the candidate predictors equally. These prior probabil-
ities yield a prior probability for each combination of
(0.5)2=1.19 x 1077, as there are 23 candidate variables.
To account for possible center differences, we consid-
ered center-adjusted combinations by forcing center to
be included in each combination evaluated by BMA. We
pre-specified to select two combinations on the basis of
the BMA analysis: (1) the maximum posterior model
probability combination (the combination with the high-
est posterior model probability) and (2) the median
probability combination (the combination consisting
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of all predictors with posterior variable probability ex-
ceeding 50%) [21].

We applied BMA to our data to develop combinations
for predicting sustained mild AKI. After identifying the
maximum posterior model probability combination and
the median probability combination, we fit a center-
adjusted logistic regression to the biomarkers included
in these combinations, with sustained mild AKI as the
outcome. Using the estimates from these regressions, we
estimated the center-adjusted and optimism-corrected
area under the receiver operating characteristic curve
(AUC) of each combination for sustained mild AKI and
for our secondary outcome, severe AKI. First, we esti-
mated the apparent center-adjusted AUC for each com-
bination and each outcome [24]. Then, we estimated the
optimism in the center-adjusted AUC for each combin-
ation and each outcome using a bootstrapping proced-
ure with 1000 replications [25]. In each bootstrap
sample we repeated the entire model selection process.
We subtracted the average optimism across bootstrap
datasets from the apparent center-adjusted AUC to esti-
mate the center-adjusted and optimism-corrected AUC.
Figure 1 describes the analysis in detail. Importantly, this
approach addresses model selection bias, resubstitution
bias, and potential bias due to center differences [26].
We emphasize that without optimism correction, esti-
mated AUCs will tend to be overestimated due to both
resubstitution bias (i.e., using the same data to develop
and evaluate a combination) and model selection bias
(i.e., using the data to select the model). By accounting
for these sources of optimistic bias, we have a more real-
istic assessment of how the combinations may perform
in independent data. This procedure does not supplant
external validation. Rather, this is a form of internal val-
idation where the full dataset is used to fit the combin-
ation and estimate its apparent performance, followed
by bootstrapping to quantify the optimistic bias in the
apparent performance. Confidence intervals (CIs) were
estimated for the center-adjusted and optimism-
corrected AUC by bootstrapping the BMA procedure
and obtaining a 95% CI for the apparent center-adjusted
AUC, and then shifting the confidence interval by the
average optimism.

Our primary measure of model performance was the
AUC, which measures how well a combination discrimi-
nates cases from controls. We acknowledge the limita-
tions of the AUC and that it represents an incomplete
assessment. Our goal was to propose combinations with
high prognostic capacity and the potential to be devel-
oped into useful risk prediction models, and we were
particularly concerned with avoiding common sources of
bias in identifying prognostic combinations, including
possible center differences [27]. The adjustment for center
does not allow for individual predicted risks. Therefore,
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Full dataset
1219 subjects

117 sustained mild AKI
60 severe AKI

!

BMA analysis
1. Remove observations missing any of
the candidate predictors
899 subjects
84 sustained mild AKI
42 severe AKI
2. Perform BMA analysis using the
complete dataset with sustained mild
AKI as the outcome
3. Identify the maximum posterior model
probability combination and the median
probability combination

T

! in center-adjusted AUC apparent center-

1. Draw a bootstrap sample from the full (n = adjusted AUC
1219) dataset Apply'eaf:h identified

2. Remove observations missing on any of the combination to the complete
candidate predictors, apply BMA and identify dataset (n = 899). Calculate
the maximum posterior model probability and ~ * Center-adjusted AUC for
median probability combinations sustained mild AKI

3. Estimate the center-adjusted AUCs for * Center-adjusted AUC for
sustained mild AKI and severe AKI by severe AKI
applying the two combinations to the
bootstrap dataset used by BMA in (2)

4. Apply the two combinations to the full dataset
and estimate the center-adjusted AUCs

5. The difference between (3) and (4) is the

estimated optimism

Correct AUCs for optimism
Repeat bootstrap procedure 1000
times. Estimate the mean
optimism and subtract from the
apparent center-adjusted AUCs

Fig. 1 Analysis flow. Legend: Abbreviations: AKI = acute kidney injury;
BMA = Bayesian model averaging; AUC =area under the receiver

operating characteristic curve

we do not assess model calibration in this work, as we do
not propose risk prediction models. However, if these
combinations are later developed into risk prediction
models, an assessment of calibration will be required.

We considered several model diagnostics, including
the posterior model probability of the selected combi-
nations across bootstrap samples, the posterior vari-
able probability of each predictor across bootstrap
samples, the posterior variable probability of each
predictor omitting each observation in turn, and the
performance of the estimated selected combinations
across bootstrap samples.

Exploratory analysis

In an exploratory analysis, we compared the perform-
ance of the BMA procedure to two common variable se-
lection methods: forward selection and univariate
selection. The following algorithm was used to compare
the three methods. We randomly split the data into
training and test datasets of equal size with equal num-
bers of sustained mild AKI cases. We then applied each
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of the three model selection methods to the training data.
First, we applied BMA and identified the maximum pos-
terior model probability combination and the median
probability combination. Second, we applied forward se-
lection with a p-value threshold of 0.1. Third, we applied
univariate selection, forming a combination of all variables
with a p-value less than 0.1. All methods used center-
adjustment. In each iteration we applied the resulting
combinations to the test data and estimated the center-
adjusted AUC for the combination using the test data
only; thus, we performed internal validation whereby
the training dataset was used for fitting while the test
dataset was held out for evaluation. We repeated this
procedure 1000 times, independently randomly split-
ting the data into training and test datasets each time.
We calculated 95% intervals as the 2.5th and 97.5th
percentiles of the AUC across these 1000 replications.

Secondary analysis

As a secondary analysis, we evaluated the association of the
biomarker combinations identified by the BMA methods
with death at 1 year and 3 years after surgery. For each bio-
marker combination and each time point (1 year and 3
years), we fit a logistic regression model with the fixed esti-
mated biomarker combination, adjusting for center. We
used the full dataset to estimate the odds ratio describing
the association between the combination and death. We
can consider the two estimated combinations, M; and Mo,
where M, has p variables (denoted by X), combined via the
parameters f31, ..., 35, and M, has g variables (denoted by
Y), combined via the parameters a;, ..., a:

My =B X1+ ... + B, X,
M2 = (XlYl + ...+ a’qu.

The odds ratio for the association between the com-
bination and death was estimated by fitting two logistic
regressions for each time point (1 year and 3 years):

logit P(Death|Center, M) = 85 + 6,:M,
logit P(Death|Center, My) = 65 + 0,M,,

where 85 and 6 are center-specific intercepts.

All analyses were completed using R 3.1.2. The BMA
package in R was used for the BMA analyses [28]. The R
code for the primary analysis is provided in
(Additional file 1: Item S1) and at https://github.com/
allisonmeisner/BM Abiomarkers.

Results

Table 2 characterizes the study population. There were
1219 patients in the full dataset, including 117 sustained
mild AKI cases and 60 severe AKI cases (55 patients had
both outcomes). Approximately 300 individuals were
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missing one or more candidate variable measurements
and were excluded from the BMA analysis, leaving 899
observations, including 84 sustained mild AKI cases and
42 severe AKI cases (Fig. 1). The prevalence of sustained
mild AKI and severe AKI were similar among the indi-
viduals with and without missing data.

Primary analysis

Table 3 gives the results from the primary BMA analyses.
The maximum posterior model probability combination
included plasma N-terminal-pro-B-type natriuretic pep-
tide (NT-proBNP), plasma heart-type fatty acid binding
protein (h-FABP), and absolute change in serum creatin-
ine from before to 0—6 h after surgery. The center-
adjusted, optimism-corrected AUC for this combination
was 0.80 (95% CI: 0.78, 0.87) for sustained mild AKI and
0.81 (0.76, 0.90) for severe AKI. The median probability
combination model included plasma interleukin-6 (IL-6),
plasma NT-proBNP, plasma h-FABP, and change in serum
creatinine. The center-adjusted, optimism-corrected AUC
for this combination was 0.81 (0.78, 0.87) for sustained
mild AKI and 0.83 (0.76, 0.90) for severe AKI. Recall that
these AUCs are estimated by first using the full dataset to
fit the combinations and estimate their apparent perform-
ance, then applying the bootstrap to estimate the optimis-
tic bias in this apparent performance. For comparison, the
biomarker with the highest individual center-adjusted
AUC for sustained mild AKI was change in serum creatin-
ine; the center-adjusted AUC for this biomarker alone was
0.76, outside of the 95% CI for the two BMA combina-
tions. The posterior model probability (a measure on the
probability scale of the support for the model in the
data) for the two combinations was 0.20. (Additional
file 1: Figures S1 and S2) illustrate the distribution of
the biomarker combinations. (Additional file 1: Figure
S3) includes the distributions of three biomarkers
among sustained mild AKI controls, stratified by cen-
ter. These distributions vary by center, providing evi-
dence that center should be taken into account when
interpreting the biomarkers. The posterior variable
probabilities for each candidate predictors are given
in Additional file 1: Table SI.

The model diagnostics considered for BMA
(Additional file 1: Figures S4-S7) indicated variability
in the posterior model probabilities and posterior
variable probabilities across bootstrap samples, as well
as some potentially influential observations. Import-
antly, however, the AUCs of the estimated selected
combinations were reasonably stable across bootstrap
samples. Finally, in order to explore the impact of de-
leting observations with missing data, we compared
the results of a multiple imputation analysis to the re-
sults of our complete-case analysis (Additional file 1:


https://github.com/allisonmeisner/BMAbiomarkers
https://github.com/allisonmeisner/BMAbiomarkers

Meisner et al. Biomarker Research (2018) 6:3

Table 2 Demographics and clinical variables by sustained mild AKI status
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Overall (1219)

Sustained Mild AKI

Non-event (1102)

Event (117)

Demographics

Age (years), mean (SD)
Male sex, n (%)

White race, n (%)
Center, n (%)

1
2
3
4
5
6
Clinical variables
Preoperative eGFR (mL/min per 1.73 m?), mean (SD)
Diabetes, n (%)
Hypertension, n (%)
Congestive heart failure, n (%)
Type of surgery, n (%)
CABG or valve
CABG and valve
Status of procedure, n (%)
Elective
Urgent or emergent
Cardiac catheterization <48 h prior to surgery, n (%)
Preoperative myocardial infarction, n (%)
Reoperation, n (%)
CPB time (minutes), mean (SD)
Severe AKI, n (%)
Biomarkers
Postoperative serum creatinine (mg/dL), median (IQR)
Change in serum creatinine (mg/dL), median (IQR)
Average serum creatinine (mg/dL), median (IQR)
Postoperative urine markers, median (IQR)
Creatinine (mg/dL)
IL-18 (pg/mL)
NGAL (ng/mL)
Albumin (mg/L)
KIM-1 (ng/mL)
L-FABP (ng/mL)
Cystatin C (mg/L)
Postoperative plasma markers, median (IQR)
BNP (pg/mL)
NGAL (ng/mL)
IL-10 (pg/mL)

715 (10.1)
826 (68%)
1141 (94%)

109 (9%)
67 (5%)
104 (9%)
534 (44%)
51 (4%)
354 (29%)

67.2 (194)
480 (39%)
961 (79%)
314 (26%)

963 (79%)
255 (21%)

964 (79%)
255 (21%)
73 (6%)
313 (26%)
155 (13%)
114.2 (59.9)
60 (5%)

1.0 (08, 1.3)
0 (-0.10,0.11)
1.1(09,1.2)

237 (120, 41.3)
116 (4.1, 423)
10.2 (4.1, 51.5)
146 (69, 39.5)
44 (0.17,0.99)
19.1 (4.3, 105.2)
0.17 (0.05, 0.26)

534 (259, 130.1)
185.6 (1186, 268.2)
447 (13.6, 109.9)

715 (10.1)
749 (68%)
1034 (94%)

102 (9%)
57 (5%)
88 (8%)
474 (43%)
43 (4%)
338 (31%)

67.5 (18.9)
427 (39%)
863 (78%)
264 (24%)

883 (80%)
218 (20%)

883 (80%)
219 (20%)
66 (6%)
279 (26%)
143 (13%)
109.7 (54.1)
5 (<1%)

1.0(08,12)
0 (-0.14, 0.10)
1.0(09,12)

229 (11.6,406)
106 (3.9, 35.0)
9.5 (3.9, 42.1)
136 (6.6, 36.1)
040 (0.16, 0.90)
17.6 (4.0, 984)
6 (0.05, 0.26)

506 (24.8, 117.6)
1783 (114.8, 258.9)
429 (13.1,109.5)

71.1 (10.5)
77 (66%)
107 (91%)

7 (6%)
10 (9%)
16 (14%)
60 (51%)
8 (7%)
16 (14%)

64.9 (23.2)
53 (45%)
98 (84%)
50 (43%)

80 (68%)
37 (32%)

81 (69%)
36 (31%)

7 (6%)
34 (29%)

2 (10%)
155.8 (88.2)
55 (47%)

13(1.1,1.7)
0.20 (0, 0.38)
12(1.0,1.5)

314 (171, 49.7)
353 (106, 235.2)
26.0 (6.8, 178.5)
25.1 (12,6, 68.0)
0.96 (047, 1.78)
520 (74, 397.9)
0.21 (0.10, 0.30)

111.7 (49.2, 248.7)
2444 (180.9, 338.8)
56.5 (25.5,110.9)
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Table 2 Demographics and clinical variables by sustained mild AKI status (Continued)
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Overall (1219)

Sustained Mild AKI

Non-event (1102)

Event (117)

IL-6 (pg/mL)
NT-proBNP (pmol/L)
TNI (pg/L)

TNTHS (ng/L)

CKMB (ug/L)
h-FABP (ug/L)
MCP-1 (pg/mL)

EGF (pg/mL)

VEGF (pg/mL)

165.5 (914, 295.6)
57.1 (225, 142.2)
15(08,3.2)

406.3 (2494, 757.0)
21.8(14.1,37.3)
31.2(21.1,494)
449.8 (306.9, 734.6)
0.90 (0.90, 3.55)
45 (45,45)

1559 (87.8, 276.5)
483 (215,1238)
15(08,29

392.9 (243.6, 695.6)
215 (137, 345)
300 (207, 46.1)
4345 (302.2, 713.8)
0.90 (0.90, 3.69)
45 (45,45)

3383 (161.0, 576.3)
138.0 (66.9, 291.6)
29 (15,69

744.2 (356.4, 1602.5)
31.6 (186, 60.8)
554 (34.7, 141.0)
5188 (384.7, 883.0)
0.90 (0.90, 0.90)

45 (45,45)

Abbreviations: AKI acute kidney injury, SD standard deviation, /QR interquartile range, eGFR estimated glomerular filtration rate, CABG coronary artery bypass graft,
CPB cardiopulmonary bypass, IL-18 interleukin-18, NGAL neutrophil gelatinase-associated lipocalin, KIM-1 kidney injury molecule-1, L-FABP liver fatty acid-binding
protein, BNP brain natriuretic peptide, IL-10 interleukin-10, IL-6 interleukin-6, NT-proBNP N-terminal-pro-B-type natriuretic peptide, TN/ troponin |, TNTHS high-sensitivity
troponin T, CKMB creatine kinase-MB, h-FABP heart-type fatty acid binding protein, MCP-T monocyte chemoattractant protein-1, EGF epidermal growth factor, VEGF

vascular endothelial growth factor

Item S2). We found similar results in terms of the
combinations selected and the performance of the se-
lected combinations.

Exploratory analysis

Figure 2 summarizes the results of the analysis com-
paring BMA, forward selection and univariate selec-
tion. For all three methods, incomplete observations
were removed, leaving 899 observations. Univariate
selection had the highest average AUC by a small
margin, although all methods performed comparably.
The mean center-adjusted AUC across sample splits

(where the combinations were fitted in the training
dataset and evaluated in the held out test dataset)
was 0.81 (95% interval: 0.75, 0.86), 0.80 (0.74, 0.87),
0.81 (0.75, 0.86) and 0.81 (0.75, 0.87) for the BMA
maximum posterior model probability combination,
the BMA median probability combination, forward
selection, and univariate selection, respectively. The
advantage of BMA in these data appears to be
parsimony; the median number of predictors included
in the selected combinations was three for both BMA
combinations, five for forward selection, and 17 for
univariate selection.

Table 3 Combinations selected by BMA methods and their estimated performance

Maximum posterior model probability combination

Median probability combination

AUC (95% Cl)
Sustained mild AKI
Severe AKI

0.80 (0.78, 0.87)
0.81 (0.76, 0.90)
Posterior model probability 0.20
Odds ratios (95% Cl)?

Log plasma IL-6°

Log plasma NT-proBNP 1.60 (1.28, 2.02)
Log plasma h-FABP 2.00 (1.33,3.02)
Change in serum Cr° 1.80 (155, 2.11)
Posterior variable probability

Log plasma IL-6°

Log plasma NT-proBNP 1.00

Log plasma h-FABP 0.76

Change in serum Cr 1.00

0.81(0.78,0.87)
0.83 (0.76, 0.90)
0.20

1.58 (1.12, 2.26)
1.58 (1.26, 1.99)
1.85 (1.22, 2.82)
1.79 (1.54, 2.10)
0.57
1.00
0.76
1.00

Abbreviations: BVIA Bayesian model averaging, AUC area under the receiver operating characteristic curve, C/ confidence interval, AKI acute kidney injury, IL-6
interleukin-6, NT-proBNP N-terminal-pro-B-type natriuretic peptide, h-FABP heart-type fatty acid binding protein, Cr creatinine

“The odds ratios and corresponding 95% Cls are based on logistic regression with sustained mild AKI as the outcome

PThe results for plasma IL-6 are given only for the median probability combination as plasma IL-6 was not included in the maximum posterior model probability combination

‘per 0.1 mg/dL
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[3 (2-3)]
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BMA: Median Probability Forward Selection
Combination

Approach

Fig. 2 Distribution of AUC estimates by selection approach. Legend: Abbreviations: BMA = Bayesian model averaging; AUC = area under the receiver
operating characteristic curve.The mean AUC (point) and 2.5th and 97.5th quantiles of AUC (line) across 1000 sample splits are given. The median
(interquartile range) combination size for each approach is given in square brackets in the horizontal axis labels

!
Univariate Selection

[5 (4-6)] [17 (17-18)]

Secondary analysis

For the secondary analysis of mortality, individuals miss-
ing any of the biomarkers in the selected combinations
were excluded, leaving 934 participants. At 1 year after
surgery, 41 individuals had died; by 3 years, 89 partici-
pants had died. For the outcome of death at 1 year, the
maximum posterior model probability combination
(plasma NT-proBNP, plasma h-FABP, and change in
serum creatinine) had a center-adjusted odds ratio per
standard deviation of 1.61 (95% CI: 1.21, 2.15) while the
median probability combination (plasma IL-6, plasma
NT-proBNP, plasma h-FABP, and change in serum
creatinine) had a center-adjusted odds ratio per standard
deviation of 1.72 (1.28, 2.31). For death at 3 years, the
maximum posterior model probability combination had
a center-adjusted odds ratio per standard deviation of
1.61 (1.29, 1.99) while the median probability combin-
ation had a center-adjusted odds ratio per standard
deviation of 1.72 (1.37, 2.15).

Discussion

We used BMA methods to develop two biomarker com-
binations with the potential to identify individuals at
high risk of AKI after cardiac surgery. The combinations
demonstrated good discriminatory performance as mea-
sured by the AUC, even after addressing several sources
of bias common in the evaluation of risk prediction
models [26]. Furthermore, the combinations performed
well not only in identifying individuals at high risk of
sustained mild AKI, for which they were constructed,

but also the more commonly used outcome of severe
AKI. Using the outcome of sustained mild AKI provided
a larger sample size than severe AKI, and we believe it
limited the number of controls misclassified as cases
compared to transient mild AKI. We also provided
evidence that the combinations developed to predict
sustained mild AKI are associated with mortality.
Prior to their adoption, these combinations must be
validated externally.

The three novel biomarkers included in the combina-
tions identified in our analysis were plasma NT-proBNP,
plasma IL-6, and plasma h-FABP, all of which were posi-
tively associated with sustained mild AKI in our data.
Plasma NT-proBNP has been previously shown to be
positively associated with mortality and cardiovascular
disease in patients with stable coronary heart disease
[29], with AKI in critically ill patients [30], and with AKI
and AKIl-associated mortality in patients with acute
heart failure [31]. Likewise, plasma IL-6 has been
shown to be positively associated with mortality in
acute heart failure [32] and with AKI in patients with
sepsis [33]. Plasma h-FABP has previously been
shown to be positively associated with AKI in patients
undergoing cardiac surgery [34].

A limitation of this study is that we developed prog-
nostic biomarker combinations, not risk prediction
models. These combinations (if validated) can be used to
identify high-risk participants, but, in their current form,
they cannot be used to estimate risk of AKI. This is a
consequence of accounting for center in our analysis in
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Threshold Number to screen to identify ~ Combination/Marker Severe AK| rate among screen  Total sample size
1 eligible patient positives (untreated) required
(None) 1 (None) 4.7% 8156
25th percentile 1.3 Maximum posterior probability combination  6.0% 6328
Median probability combination 6.1% 6166
50th percentile 2 Maximum posterior probability combination  8.0% 4600
Median probability combination 8.0% 4600
75th percentile 4 Maximum posterior probability combination  14.2% 2450
Median probability combination 15.1% 2286

Abbreviations: AKI = acute kidney injury. We calculated sample sizes for a renopreventive treatment for 90% power, alpha = 0.05, and 30% reduction in AKI risk
under treatment. A trial that enrolled only “high risk” patients would require fewer patients in the trial due to a higher event rate, while requiring that more patients be

screened in order to identify eligible patients

order to avoid possible bias resulting from differences
among centers. Several important steps are required to
develop either of the proposed combinations into a risk
prediction model: (1) validation of the prognostic cap-
acity of the combination on independent data; (2)
standardization of biomarker measurements across cen-
ters and laboratories; and (3) transformation of the
“combination score” to the risk scale and establishing
risk model calibration. Thus, the identification of prog-
nostic combinations represents an intermediate step on
the path to a risk prediction model.

This study had several strengths, including its sample
size, the number of biomarkers measured, and the use of
rigorous statistical methods to assess performance. All
statistical analyses were pre-specified, including pre-
specification of the summaries to be reported. Our ana-
lyses indicate that in these data, the BMA methods
yielded combinations with prognostic capacity compar-
able to that achieved by forward and univariate selection
but with smaller models. In other words, the BMA
methods offered combinations with similar performance
at reduced cost. Such parsimony may be desirable as
using a smaller combination may be more affordable
and practical. This was achieved without sacrificing
computational efficiency: it took 3.2 s to apply BMA to
our data using a personal Windows laptop. In addition,
there is evidence in our data that the combinations
identified by the BMA methods are associated with post-
operative mortality. Further research is needed to deter-
mine whether these biomarker combinations can be
used to identify individuals at high risk of death follow-
ing cardiac surgery.

If these combinations are found to perform well in inde-
pendent data, they could be used to enrich clinical trial
enrollment, thereby increasing the likelihood of identify-
ing new AKI therapies. For illustrative purposes, we
present examples of this strategy, termed “prognostic en-
richment” [35], in Table 4. For instance, if a researcher
were interested in developing a treatment for severe AKI,
he could use the biomarker combinations developed here

to calculate a biomarker “score” for prospective trial par-
ticipants (using each individual’s biomarker values and the
estimated coefficients for each biomarker) and enroll indi-
viduals above some threshold. If the 75th percentile of the
median probability combination was used as a threshold,
the sample size required to achieve 90% power (alpha =
0.05) for a treatment that decreases AKI risk by 30% could
be reduced from nearly 8200 to 2286 (note that such a
strategy would require screening four individuals to iden-
tify one eligible for the study).

Conclusions

Using BMA methods with data from a large, multicenter
study, we have developed biomarker combinations and
provided strong evidence that they are able to identify
patients at high risk of AKI after cardiac surgery in our
data. These combinations could be used in the develop-
ment of treatments for AKI, potentially reducing the as-
sociated morbidity and mortality and improving long-
term health after cardiac surgery.
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