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Abstract

Extensive studies of the genetic aberrations related to human diseases conducted over the last two decades have
identified recurrent genomic abnormalities as potential driving factors underlying a variety of cancers. Over the time, a
series of cutting-edge high-throughput genetic tests, such as microarrays and next-generation sequencing, have been
developed and incorporated into routine clinical practice. Although it is a classical low-throughput cytogenetic test,
fluorescence in situ hybridization (FISH) does not show signs of fading; on the contrary, it plays an increasingly important
role in detecting specific biomarkers in solid and hematologic neoplasms and has therefore become an indispensable
part of the rapidly developing field of personalized medicine. In this article, we have summarized the recent advances in
FISH application for both de novo discovery and routine detection of chromosomal rearrangements, amplifications, and
deletions that are associated with the pathogenesis of various hematopoietic and non-hematopoietic malignancies. In
addition, we have reviewed the recent developments in FISH methodology as well.
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Introduction
Mounting evidence indicates that both hematologic and
solid tumors are heterogeneous disorders with diverse
genomic aberrations [1-3]. Due to the extensive investi-
gations of the correlation between genomic instability
and disease pathogenesis conducted over the last two
decades, an increasing number of genomic abnormalities
such as gain, loss or rearrangement of chromosomal
fragments and gene mutations, have been found to be
driving factors in the pathogenesis of various malignan-
cies. Over the time, a series of cutting-edge cytogenetic
and molecular tests have been developed for detecting
such genomic aberrations, which allows more accurate
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molecular profiling for individual patients. The advanced
molecular pathology techniques [4] enable better disease
stratification and prognosis, leading to tailored thera-
peutic regimens. Apparently, a new era of personalized
medicine has arrived much earlier than most of us
expected [3].
Fluorescence in situ hybridization (FISH) is a cytogen-

etic technique developed in the early 1980s. FISH uses
fluorescent DNA probes to target specific chromosomal
locations within the nucleus, resulting in colored signals
that can be detected using a fluorescent microscope.
Compared to the conventional cytogenetic (CC) meta-
phase karyotype analysis, FISH does not require cell cul-
turing, and can directly use fresh or paraffin-embedded
interphase nuclei for a rapid evaluation. With the
discovery of numerous disease-related genes in recent
years, the applications of FISH broadened to include
more genetic diseases, hematologic malignancies, and
solid tumors. For example, FISH detection of BCR/ABL1
translocation, HER2 amplification, and ALK rearrange-
ment is critical for guiding targeted therapy in chronic
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myeloid leukemia [5], breast cancer [6,7] and lung
adenocarcinoma, respectively [8,9]. Hence, FISH tests
have been recognized as vital components of personal-
ized medicine.
With respect to biomarker detection, a series of

innovative high-throughput molecular tests, such as
array-based comparative genome hybridization (aCGH),
single nucleotide polymorphism (SNP) arrays, and next
generation sequencing, have recently been developed
and incorporated into routine clinical practice. The stun-
ning technology replacing speed raised a serious question:
is a classical low-throughput assay, such as FISH, poised
for replacement? However, the answer is quite the op-
posite. In fact, FISH has become increasingly important
in clinical diagnosis due to its simplicity and reliability
in evaluating key biomarkers in various tumors [5]. In
this article, we aim to review the advances in FISH for
disease biomarker detection and personalized medicine
applications.
Hematopoietic malignancies
Leukemia
Leukemia is a heterogeneous clonal disorder of he-
matopoietic stem and progenitor cells, characterized by
various acquired genetic aberrations. The discovery of
abnormal fusion proteins resulting from chromosomal
rearrangements has significantly contributed to our un-
derstanding of the molecular mechanism of the pathogen-
esis of leukemia. The first oncogene discovered as the
direct etiological basis of a malignancy, the BCR/ABL1
translocation in chronic myeloid leukemia (CML), results
in dysregulated tyrosinase activity, which can be treated
using the tyrosine kinase inhibitor Imatinib [10,11]. The
t (15; 17) chromosomal translocation in promyelocytic
leukemia (APML, AML-M3) functions in a similar way,
generating the novel fusion protein PML/RARa, and
ATRA (all-trans retinoic acid) offers an effective ther-
apy for APML by specifically suppressing oncogenic
activities of the PML/RARa fusion protein [12,13]. The
FISH assay is considered the gold standard for detect-
ing these chromosomal translocations and it therefore
plays a crucial role in selecting a targeted therapy for
various leukemias.
Over the last two decades, additional recurrent gen-

etic aberrations have been identified in leukemias,
improving molecular sub-classification and allowing
stratified management. Whereas most of the chromo-
somal rearrangements can be detected using CC, FISH
remains the most robust tool for detecting balanced
or unbalanced chromosomal aberrations. Furthermore,
a combination of cytogenetic and molecular profiling
permits more accurate assessment of the disease
prognosis [1].
In addition to the common chromosomal rearrange-
ments in acute myeloid leukemia (AML), which are
t(8;21)(q22;q22), t(15;17)(q22;q12) and inv(16)(p13.1q22)
or t(16;16)(p13.1q22) [14], newly obtained molecular in-
formation has been combined with cytogenetic findings
to establish a more comprehensive risk assessment sys-
tem. Among them, t(8;21)(q22;q22)/RUNX1-RUNX1T1;
t(15;17)(q22;q12)/PML-RARa; inv (16)(p13.1q22) or
t(16;16)(p13.1;q22)/CBFB-MYH1 and mutation in both
the CEBPA and NPM1 genes are associated with a good
clinical outcome, whereas t(1;22) (p13;q13)/RBM15-
MKL1; inv(3)(q21q26.2) or t(3;3)(q21;q26.2)RPN1-EVI1;
t(6;9)(p23;q34)/DEK-NUP214, the MLL gene rearrange-
ment, complex karyotypes, and mutations in both KIT and
FLT3 are associated with a less favorable prognosis [14,15].
Acute lymphoblastic leukemia (ALL) occurs mostly in

children between the ages of 1 to 5 years old. The most
common chromosomal translocations in ALL are t (9; 22)
(p190) in adults, and t (12; 21) in children respectively.
The most frequent numerical aberration in ALL is
hyperdiploidy with chromosome numbers ranging from
51 to 63, with chromosomes X, 4, 6, 10, 14, 17 and 18
generally being trisomic and chromosome 21 frequently
occurring as four copies [16,17]. Among them, patients
with t (12; 21), t (1; 19), and hyperdiploidy have a favor-
able outcome, whereas patients with MLL translocations
have a worse prognosis. It is worth noting that the pres-
ence of t (9; 22) used to indicate the worst prognosis for
ALL patients, but this fact has dramatically changed since
the introduction of the “magic bullet” Gleevec.
Due to the universal presence of BCR/ABL1 rearrange-

ment in chronic myeloid leukemia (CML), it is now
defined as the diagnostic hallmark of CML [10,11,18].
Chronic lymphocytic leukemia (CLL) generally pre-

sents as an indolent disorder but can be aggressive in
some patients due to various genetic aberrations. The
most common recurrent chromosomal abnormalities are
trisomy 12, del(13q), del(11q), del(17p) and del(6q) [19-21].
FISH can identify chromosomal rearrangements in ap-
proximately 80% of patients, whereas CC can identify
chromosomal aberrations in only approximately 40-50%
patients. The genetic information provided by FISH tests
can be critical for therapeutic decisions. Chemoimmu-
notherapy using fludarabine, cyclophosphamide and ritux-
imab (FCR) receives a better treatment response from
patients with trisomy 12 or del(11q), whereas patients
with 17p deletions do not benefit from FCR treatment at
all [20,22]. In addition to the therapeutic significance,
FISH tests facilitate differential diagnosis between CLL
and other types of small B-cell lymphoma/leukemia. For
example, mantle cell lymphoma is morphologically similar
to CLL, but carries a characteristic genetic aberrancy, the
cyclin D1 translocation, and has a much worse prognosis.
The FISH test is the gold standard method of identifying
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the cyclin D1 rearrangement, particularly in when immu-
nohistochemistry is not contributory for various reasons.

Multiple myeloma
Multiple myeloma (MM) is another heterogeneous ma-
lignancy of terminally differentiated B cells, clinically
manifested as monoclonal plasma cells that infiltrate the
bone marrow, a spike of monoclonal immunoglobulin in
the blood and/or urine, and massive osteolytic bone le-
sions. Similar to the other hematologic neoplasms, MM
is characterized by a complex pattern of extensive gen-
omic aberrations involving many chromosomes [23,24].
The genetic abnormalities found in MM can be roughly
divided into two categories based on the chromosome
ploidy status and other parameters [25,26]. The hyperdi-
ploid karyotype is generally associated with trisomies of
many chromosomes, such as 3, 5, 7, 11, 15, 19 and 21,
whereas the hypodiploid karyotype appears to be more
frequently associated with a translocation of immuno-
globulin heavy chain (IGH) locus at 14q32 [26]. The IgH
(14q32) translocations found in hypodiploid MM can
involve many different partners, such as 11q13 (CCND1),
6p21 (CCND3), 16q23 (MAF), 20q12 (MAFB), and 4p16
(FGFR3 and MMSET). Furthermore, the chromosome
ploidy status and IGH rearrangements were found to be
correlated with disease outcome in MM patients [25]. For
example, the hyperdiploid karyotype with t(11;14)(q13;q32)
indicates a better prognosis, whereas the hypodiploid
karyotypes with t(4;14)(p16; q32) or t(14;16)(q32;q23)
imply a worse clinical outcome [25,26].
Molecular studies have demonstrated that primary

translocations occur in the early stage of MM, followed
by large number of secondary translocations during
tumor progression [27]. It is believed that the secondary
genomic aberrations are responsible for a more prolifer-
ative phenotype in the advanced stage of MM. Certain
genetic aberrations, such as MYC rearrangements, del
(13q), del (17p), and the deletion of 1p and/or amplifica-
tion of 1q, have been identified as the most common
secondary aberrations in MM [27-29]. The chromosome
13 deletion or chromosome 13 monosomy occurs in
50% of the patients with advanced MM and are associ-
ated with an aggressive clinical course and an unfavor-
able prognosis [30,31]. Deletion of 17P13, presumably
resulting in LOH (loss of heterozygosity) of P53, has
been determined to be associated with a very poor clin-
ical outcome [32,33]. Chromosome 1p deletion or 1q
amplification is the most common structural aberration
found in MM and is associated with an unfavorable
prognosis [34-36].
Due to the low proliferative rate of tumor cells in the

early stage of MM, CC analysis of metaphase cells is
likely to miss detecting the primary genomic aberrations
in non-dividing tumor cells. Furthermore, some small
chromosomal rearrangements in MM may be cryptic to
chromosome banding analysis. Thus FISH, which is
effective for analysis of interphase nuclei and small
chromosomal aberrations, is recognized as the most
robust genetic test for characterizing the known cyto-
genetic abnormalities in MM. Nevertheless, integration
of data from the multiple genetic profiling techniques
including CC, FISH, RT-PCR, and gene mutation ana-
lysis, among others, would provide comprehensive infor-
mation for better stratification of MM patients with
diagnostic and prognostic significance.

Myelodysplastic syndromes (MDS)
MDS is a heterogeneous group of clonal hematopoietic
disorders characterized by blood cytopenias resulting
from ineffective hematopoiesis. The clinical outcome of
MDS is variable, and approximately 20 to 30% of the
patients will progress to AML within a few months or
years [37]. Recurrent chromosomal abnormalities, such
as -5/del(5)(q31), -7/del(7)(q31), +8, del(20)(q2), -17/del
(17)(p3.1), and –Y, are found in half of the de novo
MDS cases. The cytogenetic finding is closely related to
the clinical outcome, and thus has been incorporated
into the revised international prognostic scoring system
(IPSS-R) and the WHO prognostic scoring system
(WPSS) [38]. In addition, certain chromosomal aberra-
tions, such as -5/5q-, -7/7q-, and complex abnormalities,
were found to be correlated to the response to chemo-
therapy [37,39,40]. The metaphase chromosomal band-
ing assay is regarded as the objective standard for clonal
analysis of MDS. Being a more sensitive test, FISH can
be utilized to identify minor abnormal clones and cryptic
chromosomal aberrations that are undetectable using
CC and to provide additional information for patients
with a normal karyotype or unsuccessful culture [5,39].
With the introduction of high-resolution assays such as
aCGH and SNP arrays, it will be possible to discover
additional genetic markers in the near future, leading to
more accurate diagnoses, better targeted therapies, and
more clinically significant judgment of the prognosis for
MDS patients [41].

Non-hematopoietic malignancies (solid tumors)
Lung cancer
Anaplastic lymphoma kinase (ALK) rearrangements, which
are generally associated with pulmonary adenocarcinomas
in female non-smokers, occur in approximately 5% of
patients with non-small cell lung cancer (NSCLC). ALK
rearrangements mostly result from the fusion of the
echinoderm microtubule-associated protein-like 4 (EML4)
with ALK at chromosome 2p23. Fusion of ALK kinase
with EML4 or other fusion partners, such as TFG or
KIF5B, leads to constitutive activation of ALK kinase
[39,42]. Patients with EML4-ALK fusion-positive NSCLC,
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who were treated with the small-molecule kinase inhibitor
Crizotinib, showed a response rate of 50-60% [8]. 2011 was
the first time that the US FDA simultaneously approved a
novel anti-cancer drug (Crizotinib, Pfizer) and its compan-
ion FISH detection kit (ALK FISH probe kit, Abbott
Molecular), which highlighted the critical role of the FISH
assay in guiding ALK-targeted therapy [8,9]. Because ALK
rearrangements are reportedly mutually exclusive with
EGFR/KRAS mutations [43], ALK FISH testing is generally
recommended for patients with wild-type EGFR/KRAS
non-squamous NSCLC.
Using the ALK FISH detection kit, the 3’ and 5’ ends

of the ALK gene are differentially labeled with red or
green fluorescent probes. In benign cells, two fused
signals should be detected. In 60-70% of all of the ALK
rearrangements, the EML4-ALK gene fusion occurs
through only inversion, and therefore narrowly separated
(two to three signals apart) red and green signals are
detected in addition to the normal fusion signal. In the
other 30-40% of the cases, gene fusion occurs through
an interstitial deletion together with an inversion of EML4,
which lead to a single red signal without a corresponding
green signal, in addition to the normal fusion signal [44].
ROS1, another receptor tyrosine kinase, which is

located at chromosome 6p22, has recently been found to
be rearranged in 2-3% of the NSCLC adenocarcinomas
[7,45]. In addition, several ROS1 translocation partners,
e.g., TPM3, SDC4, SLC34A2, CD74, EZR or LRIG3, have
been found forming a fusion with the kinase domain of
ROS1, leading to constitutive activation of ROS1 and
increase in malignant transformation activity [7]. The
ROS1 rearrangements define a subset of NSCLC with
clinical characteristics and treatment responses that are
similar to those of the ALK rearrangements [45,46].
Therefore, this type of rearrangement is another predict-
ive FISH biomarker that can be applied to personalized
management of lung cancer.

Prostate cancer
Rearrangements involving androgen-regulated TMPRSS2
and ETS family members (ERG, RTV1, ETV4) were
detected in nearly half of the prostate cancers but none
of the benign prostate tissues that were tested [5,39].
The relevance of the TMPRSS2 rearrangements to the
pathogenesis, prognosis, and targeted therapy of prostate
cancer has made it a predictive biomarker for prostate
cancer [47]. The most common type of chromosome
rearrangement involves the fusion of TMPRSS2 to the
oncogene ERG, which leads to the abnormal activation
of ERG. Identification of these rearrangements may
allow stratification of prostate cancers into subtypes that
respond to specific therapies. As the test of choice for
chromosomal rearrangements, FISH was successfully
applied to frozen as well as formalin-fixed paraffin-
embedded (FFPE) prostate cancer samples with high
sensitivity and specificity. Initially, a kit containing
dual-color ERG break-apart probes that can identify
rearrangement of the ERG gene but do not indicate the
5’-partner to which ERG is fused to, was used [48,49].
Later on, a tricolor FISH assay was developed by com-
bining the red/green break-apart probes for TMPRSS2
with an orange-labeled fusion probe for the 3’ region of
ERG [50,51]. Recently, a four-color FISH assay was
reported, which allows the detection of either TMPRSS2
or ERG rearrangements regardless of the partner gene [39].

Breast cancer
Breast cancer is a fairly heterogeneous malignancy that
involves large numbers of genomic aberrations that are
inherited or are acquired during the initiation and
progression of the disease. To date, the most successful
application of FISH as a companion diagnostic test for
selecting a targeted therapy for a solid tumor may be
the FISH evaluation of Her-2 amplification for breast
cancer [52-54]. Her-2 (human epidermal growth factor
receptor-2), also called c-erbB-2, is located at chromo-
some 17q12-21.32, and encodes a trans-membrane pro-
tein of 185 kDa. Her-2 protein is an active tyrosine
kinase that plays an important role in normal cell
growth and differentiation. It has been reported that
Her-2 gene amplification occurs in 20-30% of breast
cancer patients. Her-2 gene amplification leads to its
overexpression on the cell surface. Her-2 amplification
indicates a bad prognosis, short survival time, and the
existence of a more aggressive phenotype of tumor
cells. Her-2 overexpressed breast cancer may be resist-
ant to endocrine therapy and some chemotherapies;
however, it is sensitive to Herceptin treatment and
exhibits more responsiveness to paclitaxel and anthra-
cyclines [55]. At present, there are both IHC and FISH
assays for measuring Her-2 overexpression. The former
assay is simplistic, convenient, and cost-saving, but it
can be affected by various factors and the staining
result could be ambiguous. The latter is relatively
sophisticated and expensive, but the staining result is
more accurate. Therefore, the FISH assay is regarded as
the gold standard for clinical evaluation of the Her-2
status and is generally recommended in when the IHC
result could not clarify the Her-2 status.
Traditionally, breast cancer is classified as high risk

and low risk based on the tumor’s size, grade, nodal and
ER status. However, it is noted that 15% of patients with
low risk parameters (tumor size <1 cm, low grade, lymph
node negative, ER positive) have recurrent disease and
usually die of metastasis. Meanwhile, 15% of patients in
the high risk group (tumor size > 5 cm, high grade,
lymph node positive, ER negative) have unexpected
favorable clinical outcome. These patients could receive



Table 1 The three subclones in an ascites fluid sample
from a patient with progressive epithelial ovarian cancer

Clone c-myc Rb1 Chk2 P53 BRCA1

1 4 2 5 2 4

2 3 2 3 2 4

3 3 2 2 2 5

Note: the numbers in Clone column indicate the coding number of the
subclones; the numbers in FISH probe columns (c-myc, Rb1, Chk2, p53 and
BRCA1) indicate copy numbers of each gene within a single nucleus of the
cancer clone.
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Figure 1 The three subclones from the ascites cytospin sample of a progressive epithelial ovarian cancer patient. BAC probes containing
the c-myc, Rb1, Chk2, p53 or BRCA1 genes were labeled with Spectrum Green, PF555 (red), PF590 (orange), HyPer5 (purple) or PF415 (blue),
respectively. The mixed probes were hybridized with the ascites cytospin sample from a progressive epithelial ovarian cancer patient. The results
revealed that there were three subclones showing distinct combinations of signal patterns for the five selected genes. The details of the molecular
profiling are shown in Table 1.
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mistreatments based on their histopathological classifi-
cations; therefore, there is a need to establish more
accurate molecular classification schemes [56]. A mo-
lecular classification based on a clustering analysis of the
expression patterns of 427 genes has divided breast
cancer into four types: a luminal type (further divided
into A, B and C subtypes), a basal-like type, a Her-2
positive type, and a normal breast-like type [57,58], and
the molecular classifications are closely correlated with
the prognoses, with the luminal subtype A having a good
clinical outcome; the luminal subtype B having a bad
prognosis; and the basal-like and the Her-2 positive
types having the worst clinical outcome [58]. Recent
CGH analyses of genomic aberrations in breast cancer
have identified three molecular categories of breast cancers.
The first category, called “simplex” [59] or 1q/16q [60,61],
is characterized by a few genomic rearrangements and
the second category, called “complex sawtooth” [59] or
“complex” [60,61], is characterized by more rearrange-
ments and gene copy number alterations within a
restricted genomic area. The third category, called
“complex firestorm” [59] or “mixed amplifier” [60,61],
is characterized by high intensity gene amplification
profiles restricted to a small genomic areas. Interest-
ingly, correlations seem to exist between the previous
Sorlie expression classes [58] and the specific genomic
profile categories, possibly due to the interplay of the
genomic aberrations and the overall gene expression.
The luminal A type of breast cancer is correlated with
the simplex profile and the luminal B and the Her-2
positive types with the complex firestorm profile. The
basal-like class is correlated with the complex sawtooth
profile [62].
The estrogen receptor (ER) is a well-established bio-
marker for endocrine therapy in breast cancer patients,
while the progesterone receptor (PR) is not. Clinical
studies showed that ER + PR + breast cancer shows a
better response to endocrine therapy, whereas ER + PR-
breast carcinoma has a more aggressive phenotype and a
poorer response to endocrine therapy. CGH and FISH
studies have revealed that ER + PR- breast cancers have
higher genomic instability profiles, including recurrent
amplifications in 11q13, 12q14-q15, 17q21-q25, and 20q13
and deletions in 11q13-q15 [60,63-65]. A more recent
study refined the area to 17q23.2-q23.3 and 20q13.12 for
most of the overlapping gained regions, and 3p21.32-p12.3,
9pter-p13.2, 17pter-p12, and 21pter-q21.1 for most of the
overlapping lost areas in ER + PR- breast cancers [65].
Variations in the genomic profiles exist not only

among different histopathological types of breast cancer,
but are also found among the types of breast cancers of
different ethnic groups. A recent study comparing breast
cancer samples from African and American women has
identified 6 chromosomal regions with a higher rate of
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Figure 2 The three subclones obtained from a cancer stem-cell preparation for a patient with low-differentiated ovarian adenocarcinoma.
BAC probes containing c-myc, Rb1, Chk2, p53 or BRCA1 were labeled with Spectrum Green, PF555 (red), PF590 (orange), HyPer5 (purple) or PF415
(blue), respectively. The mixed probes were hybridized with the cancer stem-cell preparation sample from a low-differentiated ovarian
adenocarcinoma patient. The results revealed that there were three subclones showing distinct combinations of signal patterns for the five
selected genes. The details of the molecular profiling are shown in Table 2.

Hu et al. Biomarker Research 2014, 2:3 Page 6 of 13
http://www.biomarkerres.org/content/2/1/3
CNAs and several candidate biomarkers that could be
specific to African women [66].
Extensive screening of genomic aberrations has led to

the identification of candidate biomarkers associated with
breast cancer tumorigenesis, invasiveness, and metastasis,
including MYC at 8q24 [67], CCND1 at 11q13 [68], Her-2
at 17q12 [53], MTDH at 8q22 [69,70], and ETS transcrip-
tion factors at 1q21 and 1q32 [71].
While substantial progress has been made in breast

cancer genetics over the last two decades, further large-
scale studies integrating both genome and transcriptome
analyses [72] are needed to identify the key oncogenic
driver genes or other specific biomarkers. The potential
new findings could be of predictive values for diagnosis,
predicting metastasis, survival assessment, and guiding
targeted therapy. FISH can be of particular value in both
the discovery and clinical routine detection of such bio-
markers and will continue to play an important role in
the personalized management of breast cancer.
Table 2 The three subclones obtained from a cancer
stem-cell preparation for a patient with low-differentiated
ovarian adenocarcinoma

Clone c-myc Rb1 Chk2 P53 BRCA1

1 9 1 1 2 2

2 5 2 1 1 1

3 4 1 1 1 2

Note: the numbers in Clone column indicate the coding number of the
subclones; the numbers in FISH probe columns (c-myc, Rb1, Chk2, p53 and
BRCA1) indicate copy numbers of each gene within a single nucleus of the
cancer clone.
Melanoma
Melanoma is a heterogeneous group of melanin-producing
skin malignancies with acquired genetic aberrations.
Studies employing aCGH and FISH have identified a
variety of recurrent chromosomal aberrations in malig-
nant melanoma. In clinic, a small but significant part of
melanocytic lesions presents with ambiguous morpho-
logic features, and those cases are challenging to expe-
rienced dermatopathologists. Thus, a specific ancillary
genetic test is needed for the initial characterization to
avoid misdiagnosis and overtreatment [73,74]. Most
primary melanomas exhibit either numerical or structural
chromosomal abnormalities, such as deletions in 9p, 10,
6q and 8p and copy-number increase in 7, 8, 6p, 1q, 20,
17, and 2 [75,76]. Given that multiple chromosomal aber-
rations must be evaluated to obtain genetic profiles of
melanoma, a multi-color approach comprising 4 gene
probes have been adopted for a FISH-based melanoma
assay [77]. The clinical studies showed that use of FISH in
unambiguous cases provided promising results with rela-
tively high sensitivity and specificity. However, the diag-
nostic utility of FISH in ambiguous cases remains to be
determined because a standard definition of “malignancy”
is yet to be established from clinical studies with large
samples of ambiguous cases [78]. Furthermore, the discov-
ery of key genomic aberrations has led to more effective tar-
geted therapies for melanoma. For example, Vemurafenib
(BRAF V600E inhibitor) and Ipilimumab (anti-CTLA4)
were recently approved by the U.S. FDA and agents
directed against the MAP kinase pathway (anti-MEK,
anti-ERK, other anti-BRAF) are under development for
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Figure 3 The six subclones from the bone marrow sample taken from an ALL patient. BAC probes containing the TEL, AML1, PAX5, p16 or
IKZF1 genes were labeled with SpectrumGreen, PF555 (red), PF590 (orange), HyPer5 (purple) or PF415 (blue), respectively. The mixed probes were
hybridized with the bone marrow sample of an ALL patient. The results revealed that there were six subclones showing distinct combinations of
the signal patterns for the five selected genes. The details of the molecular profiling are shown in Table 3.
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targeted therapy in cases of advanced metastatic melan-
oma [79].
Table 3 The six subclones from the bone marrow sample
taken from an ALL patient

Clone Fusion TEL AML1 PAX5 P16 IKZF1

1 1 1 2 1 2 2

2 1 1 2 2 2 1

3 1 1 2 2 2 0

4 1 1 2 1 1 1

5 1 1 3 2 2 2

6 1 1 3 2 2 0

Note: the numbers in Clone column indicate the coding number of the
subclones; the numbers in FISH probe columns (Fusion, TEL, AML1, PAX5, p16
and IKZF1) indicate copy numbers of each gene (or gene fusion) within a
single nucleus of the cancer clone.
Progress in FISH methodology
FISH automation
Manual evaluation of large numbers of clinical FISH
samples is no doubt a time-consuming, exhausting, and
error-prone procedure. Moreover, the inter-observer vari-
ability could lead to scoring inconsistency and even
misdiagnosis. Thus, an automated system would greatly
reduce such errors. Such an automated system is gener-
ally comprised of the following parts: a light source,
filter set, objectives, signal detector, motorized scanning
stage, and a computer equipped with dedicated soft-
ware in charge of automated tissue-area selection,
signal evaluation and data calculation [80]. There were
several reports of the successful automated evaluation
of HER2 gene amplification using breast cancer speci-
mens [81-83]. An automated method has also been
applied to detecting balanced rearrangements, such as
the BCR/ABL1 gene rearrangements in patients with
CML [84]. Nevertheless, automated FISH is still in a
premature stage with more standardization and large
scale clinical trials pending.
QM-FISH
Previously, most commercial FISH detection kits con-
tained one probe labeled with a single fluorochrome or
two probes labeled with two distinct fluorochromes.
These single or dual-color kits were used to detect a
deletion or an amplification of a single locus-specific
genomic fragment or a balanced chromosomal trans-
location. With the rapid progress in disease gene discov-
eries, there is a need to simultaneously detect multiple
genes. Thus, a FISH method that employs multiple



Table 4 The clonal components of bone marrow samples
taken from an ALL patient upon the initial diagnosis and
post chemotherapy

Clone Fusion TEL AML1 PAX5 P16 IKZF1

Initial diagnosis 1 1 2 2 2 2

1 1 3 2 2 2

1 1 3 2 1 2

Post chemotherapy 1 1 2 1 0 1

1 1 3 2 2 1

1 1 3 2 1 1

Note: the numbers in FISH probe columns (Fusion, TEL, AML1, PAX5, p16 and
IKZF1) indicate copy numbers of each gene (or gene fusion) within a single
nucleus of the cancer clone.

Figure 4 The clonal components of bone marrow samples taken from an ALL patient upon the initial diagnosis and after chemotherapy.
BAC probes containing the TEL, AML1, PAX5, p16 or IKZF1 genes were labeled with Spectrum Green, PF555 (red), PF590 (orange), HyPer5 (purple) or
PF415 (blue), respectively. The mixed probes are hybridized with the bone marrow samples upon the initial diagnosis and after thermotherapy of
an ALL patient. The results revealed that there are distinct subclones upon the initial diagnosis and after chemotherapy, which showed different
combinations of signal patterns for the five selected genes. The details of the molecular profiling are shown in Table 4.

Hu et al. Biomarker Research 2014, 2:3 Page 8 of 13
http://www.biomarkerres.org/content/2/1/3
probes, called quantitative multi-gene FISH (qmFISH)
has recently become popular. Abbott’s MultiVysion PB
multi-color probe kit, a five-color FISH kit that detects
chromosomes 13, 16, 18, 21 and 22 was developed to
assist in preimplantation diagnosis (PGD) by polar body
analysis [85]. A four-color FISH assay, targeting chromo-
somes 1, 2, 6, 9, 7, 17, the loci 3p24pter, and 3p13p14
has been used for the early diagnosis of renal carcinoma
in biopsies of uncertain renal masses [86]. LAVysion
FISH, a four-color FISH kit for simultaneously detecting
chromosome 6 and the 5p15, 7p12 (EGFR gene), and
8q24 (MYC gene) loci was developed to assist in the
differential diagnosis of ambiguous lung cancers [87]. In
recent years, qmFISH has been used in genetic variega-
tion and clonal evolution studies of both hematological
and non-hematological cancers [88-92].
We have developed a state-of-the-art qmFISH system

that can use as many as 10-20 fluorochromes, and the
signals could only be analyzed by a computer-controlled
detector (Zetterberg, A. et al, unpublished). This system
is particularly useful for large-scale multi-gene clinical
investigations of solid tumors or blood malignancies.
Currently, we are applying qmFISH to study the gen-

etic architecture and clonal evolution in cases of ovarian
cancer and leukemia. Ovarian cancer is a heterogeneous
female malignancy characterized by various genomic
aberrations. To define the molecular subgroups of ovar-
ian cancer, we have chosen five genes, c-myc, Rb1, Chk2,
p53 and BRCA1, which are known to be associated with
the pathogenesis of ovarian cancer. The ascites fluid
samples were collected from ovarian cancer patients
from Tianjin Medical University Cancer Institute and
Hospital from January to December 2012, with hospital
ethical review committee approval. The ovarian cancer
cell sections were prepared by Cytospin procedure and
fixed overnight in methanol. qmFISH was performed as
previously described [93]. In each case, at least 200
nuclei were scored for CNAs (copy number alterations)
of c-myc, Rb1, Chk2, p53 and BRCA1. The results
showed that an ascites fluid cytospin sample from a rep-
resentative case of progressive epithelial ovarian cancer
contained at least three subclones with distinct molecu-
lar profiles for the selected genes (Figure 1 and Table 1).
Furthermore, a CD133 + ALDH + cancer stem cell [94,95]



Table 5 FISH probes that are commonly used for clinical
diagnosis of hematological diseases

Probes Cytogenetic
anomaly

Associated disorders

BCR/ABL t(9;22)(q34;q11) CML, ALL, AML-M1, AML-M2,
MPD

PML/RARα t(15;17)(q22;q21) AML-M3, CML Ph+

AML1/ETO t(8;21)(q22;q22) AML-M2, AML-M4, MDS

MLL (11q23) t(1;11)(p32;q23) ALL, AML

t(1;11)(q21;q23) AML-M4, AML-M5

t(2;11)(p21;q23) MDS

t(4;11)(q21;q23) ALL, AML

t(6;11)(q27;q23) AML-M4, AMl-M5

t(9;11)(p22;q23) ALL, AML-M5, MDS, t-MDS

t(10;11)(p13;q23) AML-M4, AMl-M5

t(11;17)(q23;q21) AML-M3, AML-M4, AMl-M5

t(11;19)(q23;p13) ALL, AML-M4, AML-M5, t-AMl

t(X;11)(q13;q23) T-ALL

del(11q23) AML, ALL, CLD, CLL, MDS, NHL

CBFB (16q22) t(16;16)(p13;q22) AML-M4Eo, MDS

inv(16)(p13q22) AML-M4Eo

del(16q22) AML, AML-M4Eo, NHL

EVI1 (3q26) t(3;3)(q21;q26) AML, MDS

inv(3)(q21q26) AML-M4, AML-M6, CML Ph+, MDS

t(3;21)(q26;q22) AML, CML Ph+, MDS

FGFR1/D8Z2
(8p11)

t(8;13)(p11;q12) MPD

t(8;16)(p11;p13) AML-M4, AML-M5

TEL/AML1 t(12;21)(p13;q22) ALL

TCF3/PBX1 t(1;19)(q23;p13) pre-B ALL

CKS1B (1q21)/
CDKN2C (1p32)

dup(1)(q21q32) ALL, CLD, NHL

del(1)(q21) NHL

del(1)(p32p36) CLD, NHL

MYC (8q24) t(2;8)(p12;q24) ALL-L3, BL, NHL

t(8;14)(q24;q32) ALL-L3, BL, MM, NHL

t(8;14)(q24;q11) T-ALL

t(8;22)(q24;q11) ALL-L3, BL

CEP8 +8 ALL, AML, CLD, MPD, MDS, PV

EGR1 (5q31)/
D5S721 (5p15.2)

-5 AML, MDS

del(5)(q13q33) AML, MDS, MPD, 5q- syn

D7S486 (7q31)/
CEP7
(7p11.1-7q11.1)

-7 AML, MDS, MPD

del(7)(q11) ALL, AML, MDS

del(7)(q22q34) AML, CLD, CMD, MDS, NHL

D20S108
(20q12)

del(20)(q11q13) AML, CMD, MDS, PV

-20 ALL

RB-1 (13q14) del(13)(q12-q22) AML, AMM, CLD, CLL, MM, MDS,
NHL

del(13)(q12-q14) AML, AMM, CLD, MDS, NHL

Table 5 FISH probes that are commonly used for clinical
diagnosis of hematological diseases (Continued)

P53 (17p13.1) del(17)(p13.1) ALL, AML, CLD, MDS, NHL

-17 CLL

IGH (14q32) del(14q32) CLD, NHL

t(2;14)(p13;q32) B-CLL

t(3;14)(q27;q32) DLCL, FL

t(4;14)(p13;q32) MM

t(5;14)(q31;q32) ALL

t(6;14)(p25;q32) MM

t(8;14)(q24;q32) ALL

t(9;14)(p12-13;q32) B-NHL, LPL

t(11;14)(q13;q32) B-PLL, CLD, MM, MCL, MGUS, NHL

t(14;16)(q32;q23) MM

t(14;18)(q32;q21) CLD, FL, DLCL, MM, NHL

t(14;19)(q32;q13) CLD, CLL, NHL

t(14;22)(q32;q11) ALL

ATM (11q22.3) del(11)(q13q14-q23) AML, CLD, CLL, MDS, NHL

FGFR3/IGH t(4;14)(p13;q32) MM

MAF/IGH t(14;16)(q32;q23) MM

CCND1/IGH t(11;14)(q13;q32) B-PLL, CLD, MM, MCL, MGUS, NHL

CEP12 +12 AML, CLL, CLD, NHL

BCL6 (3q27) t(3;14)(q27;q32) DLCL, FL

t(3;22)(q27;q11) DLCL, FL

BCL2 (18q21) t(11;18)(q21;q21) MZL, NHL

t(14;18)(q32;q21) CLD, FL, DLCL, MM, NHL

del(18)(q21) AML, CLD, NHL

-18 CLD

+18 ALL, CLD

CEPX/Y XY/XX ALLO-SCT

-Y ALL, AML, CLD, MDS, MM, MPD,
NHL, PV
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preparation isolated from a case of low-differentiated ovar-
ian adenocarcinoma included three subclones with distinct
qmFISH fingerprints (Figure 2 and Table 2). Thus, qmFISH
analysis appears to be an excellent tool for molecular pro-
filing of ovarian cancer at the single cell level.
Another of our projects is to apply qmFISH to mo-

lecular profiling of acute lymphatic leukemia (ALL). It
has been reported that t (12; 21) leads to fusion of an
almost complete RUNX1(AML1) protein to part of the
ETV6 (TEL) protein, which is found in 20-25% of the
ALL patients. The ALL patients with the ETV6 (TEL)/
RUNX1(AML1) translocation generally have a better
clinical outcome, but are more likely to experience a
recurrence. The deletion of ETV6 (TEL) gene, which is
associated with the ETV6 (TEL)/RUNX1(AML1) trans-
location, is common in ALL and leads to LOH of



Table 6 FISH probes that are commonly used for clinical
diagnosis of solid tumors

Probes Cytogenetic
anomaly

Associated
disorder

CEP3,7,17; p16 Chromosome 3, 7, 17
aneuploidy; 9p21

Bladder carcinoma

HER-2/CEP17 17q11.2-q12 Breast cancer

TOP2A 17q21-22 Breast cancer

TERC/CEP3 3q26.3 Cervical cancer

EWSR1 22q12 Ewing sarcoma

EGFR 7p12 NSCLC

ALK 2p23 NSCLC

ROS1 6p22 NSCLC

TMPRSS2/ETV1 21q22.3/7p21.1 Prostate cancer

TMPRSS2/ETV4 21q22.3/17q21.3 Prostate cancer

ERG 21q22.2 Prostate cancer
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12p12-13. In addition to ETV6 (TEL) and RUNX1
(AML1), we selected PAX5, CDKN2A(P16) and IKZF,
which are known to be associated with ALL pathogen-
esis, as target genes for the molecular profiling [88,96].
The bone marrow (BM) samples were collected from
the ETV6 (TEL)/RUNX1(AML1) positive ALL patients
from Tianjin Blood Diseases Hospital from January to
December 2012, with hospital ethical review committee
approval. The BM mononuclear cells were fixed in me-
thanol:acetic acid solution. qmFISH was performed as
previously described [93]. In each case, at least 200 nu-
clei were scored for the presence of the ETV6 (TEL)/
RUNX1(AML1) fusion gene in combination with CNAs
of ETV6 (TEL), RUNX1(AML1), PAX5, CDKN2A(p16)
and IKZF. The results showed that the bone marrow
sample of a representative case of ALL contained at least
6 subclones with distinct combinations of molecular pat-
terns of the five selected genes (Figure 3 and Table 3).
The qmFISH studies have also been successfully used to
compare the clonal components of bone marrow sam-
ples taken from the same ALL patient upon the initial
diagnosis and post chemotherapy, which demonstrated a
clonal evolution phenomenon (Figure 4 and Table 4).
Taken together, our results showed that qmFISH is a
useful tool for analyzing the genetic architecture and
clonal evolution of leukemia cells, which could provide
important information for monitoring the disease process
and appropriately selecting the therapy.

Concluding remarks
While high-resolution molecular profiling techniques
such as aCGH, SNP array analysis and whole-genome
sequencing play critical roles in identifying novel chromo-
somal abnormalities, they are not practical for a routine
application of clinical diagnosis due to various reasons. In
contrast, FISH continues to work as a cornerstone in
genetic labs due to its specificity, simplicity and reliability.
Given the theory that cancer may be derived from tumor
stem cells [97], the genetic abnormalities detected by FISH
are likely to represent the initial or crucial genetic lesions
responsible for cancer at the stem-cell level. Currently,
FISH is widely used for detecting specific genomic aberra-
tions, providing important information for disease diagno-
sis, risk stratification and prognosis (Tables 5 and 6).
Furthermore, FISH is the gold standard for evaluating
some key biomarkers, such as BCR/ABL1, HER2 and ALK
rearrangements, and plays a critical role in guiding tar-
geted therapies. In conclusion, FISH has evolved to be-
come a vital diagnostic tool for personalized medicine.
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