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Small biomarkers with massive impacts: 
PI3K/AKT/mTOR signalling and microRNA 
crosstalk regulate nasopharyngeal carcinoma
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Abstract 

Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast 
Asia and southern China. The Phosphatidylinositol 3‑kinase/protein kinase B (AKT)/mammalian target of rapamycin 
(mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, 
apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, 
key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a 
growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class 
of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/
AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential 
diagnostic biomarkers and therapeutic targets.
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Introduction
Nasopharyngeal carcinoma (NPC) is a malignant head 
and neck tumour that occurs in the top and sidewalls of 
the nasopharyngeal cavity [1]. NPC is uncommon com-
pared to other tumour types and has a very unique geo-
graphic distribution, with more than 70% of new case 
reports occurring in East and Southeast Asia [2]. The 
incidence of NPC is related to Epstein–Barr virus (EBV) 
exposure, diet, and genetic factors [3]. Radiotherapy has 
achieved good results in the treatment of NPC because of 
its radiosensitivity [4, 5]. Approximately 95% of patients 
with early-stage nasopharyngeal carcinoma survive for 

more than 5 years, but only 54.2% of NPC patients are in 
the early stage [6]. In addition, NPC patients still suffer 
from locoregional recurrence, metastasis, and chemo-
radiotherapy resistance [7]. Therefore, further studies, 
particularly of early diagnostic biomarkers and radiation 
sensitization targets, are needed.

The phosphatidylinositol 3-kinase/protein kinase B 
(AKT)/mammalian target of rapamycin (mTOR) signal-
ling pathway is vital to many hallmarks of tumours, such 
as cell growth, metabolism, and genomic instability, as 
well as angiogenesis and inflammation, and can func-
tion alone or in combination with many other important 
signalling pathways [8, 9]. Molecular studies have indi-
cated that NPC pathogenesis involves multiple genetic 
and epigenetic alterations leading to uncontrolled acti-
vation of many signalling pathways, such as the PI3K/
AKT/mTOR signalling pathway [10]. In line with this, 
a study indicated that abnormal activation of the AKT/
mTOR pathway is related to the poor prognosis of NPC 
[11]. In addition, an increasing number of studies have 
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shown that the abnormal activation of the PI3K/AKT/
mTOR signalling pathway is involved in destroying the 
regulation of cell growth and survival, metastasis, and the 
development of radiation resistance [12, 13].

MicroRNAs (miRNAs) are noncoding 22–25-nucle-
otide-long RNA molecules that play important roles 
in regulating gene expression [14]. They bind to target 
mRNA molecules and specific proteins, thereby affect-
ing their expression [15]. Many studies have shown aber-
rant expression of miRNAs in various human tumours, 
including NPC [16–18]. Moreover, many miRNAs have 
been demonstrated to be dysregulated in NPC [19, 20]. 
Previous studies have found that miRNAs regulate the 
expression of key genes via the PI3K signalling pathway 
in NPC and affect the proliferation, apoptosis, invasion, 
and metastasis of various tumours, including NPC [21, 
22]. Interestingly, the PI3K/AKT/mTOR signalling cas-
cade is also involved in miRNA biogenesis and biological 
function [23]. Therefore, there is great potential for regu-
latory miRNAs of the PI3K/AKT/mTOR signalling path-
way as diagnostic biomarkers and radiation sensitization 
targets in NPC. In this review, we first discuss the PI3K/
AKT/mTOR signalling pathway and its role in NPC. Fur-
thermore, after a brief introduction to the biogenesis and 

functions of miRNAs, their potential clinical value in the 
diagnosis and treatment of NPC is discussed. Finally, the 
importance of the interaction between the PI3K/AKT/
mTOR signalling pathway and tumour suppressor/onco-
genic miRNAs in NPC is presented. This review compre-
hensively discusses the prospects of basic research on 
miRNAs and the PI3K/AKT/mTOR pathways for future 
clinical application in the treatment of NPC.

The PI3K/AKT/mTOR signalling pathway: roles in cancers
The PI3K/AKT/mTOR signalling pathway plays an 
important role in fundamental cellular activities such 
as cellular metabolism, growth, and proliferation in 
many tumours [24] (Fig. 1). This signalling pathway can 
be activated by a variety of cellular stimuli, such as low 
levels of nutrients and/or oxygen supply, ionizing radia-
tion, and pH [21]. Aberrant activation of PI3K signal-
ling is frequently reported in aggressive tumours, such 
as NPC [25]. PI3Ks are lipid kinases that are divided 
into three different classes, including class I PI3Ks, 
class II PI3Ks, and class III PI3Ks [26]. Class I PI3Ks 
are heterodimers that consist of a p85 regulatory subu-
nit and a p110 catalytic subunit (p110α, p110β, p110γ 
or p110δ). Class II PI3Ks are composed of a single 

Fig. 1 Interactions between miRNAs and key components of the PI3K/AKT/mTOR signalling pathway in cancers. External growth factors and 
miRNAs activate the PI3K/AKT/mTOR pathway, which directly and indirectly results in tumorigenesis, inhibition of apoptosis and autophagy, 
and activation of proliferation. AKT, protein kinase B; mTOR, mammalian target of rapamycin; PDK1, phosphoinositide‑dependent kinase 1; PI3K, 
phosphoinositide 3‐kinase; 4E‑BP1, eukaryotic translation initiation factor 4E binding protein 1; RPS6, ribosomal protein S6; eIF4E, eukaryotic 
translation initiation factor 4E; PIP3, phosphatidylinositol 3,4,5‑trisphosphate; BAD, Bcl2‑related death protein
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catalytic subunit; PI3KC2α, PI3KC2β, and PI3KC2γ are 
three isoforms of class II PI3Ks that are stimulated by 
cytokine receptors, receptor tyrosine kinases (RTKs), 
and integrins. Class III PI3Ks are composed of a cata-
lytic VPS34 subunit. Among them, class I PI3Ks are the 
most studied and have been implicated in tumorigen-
esis and tumour growth. The PIK3CA gene encoding 
the PI3K catalytic isoform p110α is considered to be 
one of the most frequently mutated oncogenes in many 
malignant tumours, including NPC [27]. The histidine 
residue (H1047) in the kinase domain and the acidic 
cluster (E542, E545, and Q546) in the helical domain 
are two hot spots containing PIK3CA gene muta-
tions [28]. The serine/threonine kinase AKT is central 
to this pathway and consists of three distinct isoforms 
(AKT1-3) [29]. The mTOR kinase includes two distinct 
protein complexes: mTOR complex 1 and 2 (mTORC1 
and mTORC2). Characteristically, mTORC2 is insensi-
tive to rapamycin. Rapamycin is a potent inhibitor of 
mTOR complex 1 (mTORC1) signalling, and its activity 
is dependent on PI3K-mediated growth factor signalling 
[30, 31]. RTKs or G protein-coupled receptors (GPCRs) 
can activate PI3K, which senses interleukins, growth 
factors (such as insulin), and other external messengers. 
When PI3K is activated, it can catalyse the phosphoryla-
tion of PIP2 at position 3 of the inositol ring to produce 
PIP3 [32]. Phosphatase and tensin homologue (PTEN) 
negatively regulates this process [33]. PIP3 then recruits 
two protein kinases to the plasma membrane through 
its pleckstrin homology (PH) domains: AKT and phos-
phoinositide-dependent protein kinase 1 (PDK1). Once 
these two proteins are recruited to the cell membrane, 
AKT is phosphorylated by mTORC2 at the second resi-
due (S473) and undergoes a conformational change that 
allows it to be phosphorylated on Thr308 by PDK1. In 
addition, the mTORC1 and mTORC2 complexes pro-
mote growth and enhance metabolism while weakening 
autophagy and apoptosis by phosphorylating many sec-
ondary molecules, such as ribosomal protein S6 kinase 
1/2 (S6K1/2) [34, 35]. Activation of the PI3K/AKT sig-
nalling pathway promotes the activation of mTORC1. 
Subsequently, activated mTORC1 phosphorylates its 
downstream effectors, such as S6K and eukaryotic 
translation initiation factor 4E binding protein 1 (4E-
BP1). Activated S6K phosphorylates ribosomal protein 
S6 (RPS6) and stimulates translation again. On the other 
hand, inactivated 4E-BP1 enhances the release of eukar-
yotic translation initiation factor 4E (eIF4E), which is 
regarded as an inhibitory factor in the process of trans-
lation initiation [36, 37]. It is worth noting that 4E-BP1 
plays an important role in tumorigenesis, for example, 
promoting cell growth, protein translation, and drug 

resistance [38]. Therefore, this signal transduction plays 
an important role in tumours [39].

The role of PI3K/AKT/mTOR signalling in NPC development 
and therapy
Studies have found that since the PI3K/AKT/mTOR 
pathway is closely related to apoptosis, autophagy, and 
epithelial-mesenchymal transition (EMT), it can affect 
cell growth, proliferation, invasion, metastasis, and radi-
oresistance in NPC [40–42] (Fig.  2). Cell growth is an 
important biological feature of organisms and is affected 
by the cell cycle and apoptosis. Numerous studies have 
indicated that the cell cycle is the convergence point 
of the PI3K/AKT/mTOR signalling cascade and that 
atypical cell cycle progression is an essential feature of 
tumours [43, 44]. The mTOR complex inhibitor rapamy-
cin inhibits cell growth and the cell cycle [45]. Overex-
pression of constitutively active mutant S6K1 or eIF4E 
accelerates the G1 phase, indicating that 4E-BP1/eIF4E, 
as downstream signals of mTOR, regulate cell prolifera-
tion to a certain extent by controlling the cell cycle [46]. 
In addition, activated PI3K can directly inhibit tumour 
cell apoptosis [37]. The anti-apoptotic factor AKT can 
inhibit Bcl-2-associated death protein (BAD) and lead 
to the dissociation of Bcl-2 from the mitochondrial 
membrane, thereby inhibiting apoptosis [47]. Radia-
tion resistance is a common phenomenon in NPC cells 
and is mainly related to autophagy [48]. The process of 
autophagy is broken down into four critical steps: ini-
tiation, nucleation, maturation, and degradation [49]. 
In various tumours, the activation of the PI3K/AKT/
mTOR pathway promotes the initiation and nucleation 
of autophagy [50]. In the initial stage, foreign stimuli can 
activate the Unc-51-like kinase 1 (ULK1)-autophagy-
related gene 13 (ATG13)-family interacting protein 200 
kD (FIP200) kinase complex through the PI3K/AKT/
mTOR pathway. During the nucleation step of autophagy, 
the ULK1 complex phosphorylates and activates the 
beclin1/PI3K III complex. The complex includes Bec-
lin-1, PI3K III, and other proteins, such as VPS15 and 
ATG14L, depending on the subcellular localization of 
the complex. In addition, PI3K/AKT/mTOR signal trans-
duction also plays a significant role in tumour metastasis 
via the induction of tumour EMT and angiogenesis [51]. 
For example, activated AKT upregulates key angiogenic 
factors, such as hypoxia-inducible factor-1 (HIF-1) and 
vascular endothelial growth factor (VEGF), to enhance 
tumour cell trafficking [52, 53].

Intriguingly, PI3K/AKT/mTOR signalling has been 
shown to be important in the treatment of NPC. The 
mainly treatment for NPC is radiotherapy and adjunct 
chemotherapy. A recent study showed that the PI3K/
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AKT/mTOR pathway is involved in not only radio-
therapy resistance in NPC but also chemotherapy 
resistance [54]. Zhang et al. [55] found that PI3K/AKT 
signalling was involved in enhancing the radiosensitiv-
ity of NPC cells and reversing epithelial − mesenchy-
mal transformation. Poor prognosis is a problem in the 
treatment of many tumours, including NPC. A study 
found that the prognosis of NPC patients with PI3K-
AKT/mTOR signalling pathway mutations was poor. 
Next-generation sequencing of driver genes in the 
PI3K-AKT and mTOR signalling pathways is expected 
to provide new ideas for basic research and targeted 
therapy of NPC [56]. Another study showed substan-
tial changes in PTEN, a key gene regulating the PI3K/
AKT/mTOR pathway, after radical radiotherapy of 
NPC during long-term follow-up according to pathol-
ogy and genomic phenotype assessment of secondary 
neuroendocrine carcinomas [57]. Therefore, it is very 
important to study the effect of PI3K/AKT/mTOR sig-
nalling on the prognosis of NPC. Furthermore, it has 
been found that the mechanism of many traditional 
Chinese medicines against NPC is regulation of the 
PI3K/AKT/mTOR pathway [58–60]. In general, the 
study of PI3K/AKT/mTOR signalling is of great signifi-
cance for understanding the occurrence, development 
and treatment of NPC.

miRNAs: clinical value in NPC
miRNAs, noncoding RNA molecules, play an essential 
role in posttranslational modification and protein synthe-
sis [61]. Studies have indicated that these molecules can 
regulate more than 30% of the human genome [62, 63]. 
In addition, it has been reported that a large number of 
miRNAs are involved in the pathological process of NPC 
[64]. For example, miR-296-5p, miR-137, and miR-483-5p 
can regulate the migration and invasion of NPC cells 
[65–67]. Current research on miRNAs in tumours mainly 
uses miRNAs as diagnostic and prognostic biomarkers 
and therapeutic targets. Therefore, in this section, we will 
discuss the roles and clinical value of miRNAs in NPC.

miRNAs as diagnostic and prognostic biomarkers
A large number of studies have shown that miRNAs can 
be used as diagnostic biomarkers of tumours, includ-
ing NPC [68, 69]. Li et al. [70] found that the combina-
tion of three serum miRNAs, miR-29c-3p, miR-143-5p, 
and miR-205-5p, may be a new noninvasive biomarker 
for NPC screening. In addition, a model based on three 
miRNAs, miR-134-5p, miR-205-5p, and miR-409-3p, 
could be used as a marker for the diagnosis of NPC [71]. 
As a tumour suppressor, miR-29c is downregulated in 
the serum and tissues of patients with NPC, which indi-
cates that it may be a molecular marker for the diagnosis 

Fig. 2 The underlying mechanisms of the PI3K/AKT/mTOR signalling pathway in NPC



Page 5 of 12LI et al. Biomarker Research           (2022) 10:52  

of NPC [72]. In addition, a recent study identified circu-
lating miR-31-5p as a potential new biomarker for the 
early diagnosis of NPC [73]. According to recent stud-
ies, increased expression of some miRNAs is associated 
with reduced overall survival and increased mortality of 
patients with NPC [74]. For example, the expression of 
miR-663 in the serum of patients with NPC was signifi-
cantly higher than that in healthy people, and its expres-
sion was negatively correlated with the overall survival 
rate of patients with NPC [75, 76]. These results suggest 
that miR-663 can be used as a prognostic biomarker in 
NPC. Some studies have also shown that miR-342-3p, as 
a tumour suppressor, is an important molecular marker 
for the prognosis of patients with NPC [77]. These stud-
ies suggest that miRNAs can be used as potential diag-
nostic and prognostic biomarkers in NPC.

miRNAs as radiation sensitization targets for NPC therapy
Enhancing the radiotherapy sensitivity of NPC is a topic 
that is being continuously explored by researchers [78]. 
Studies have detected differentially expressed miRNAs 
in radiosensitive and radioresistant NPC cells by gene 
sequencing and microarray analysis and found many 
differentially expressed miRNAs [79, 80]. Among them, 
miR-206 is downregulated in radioresistant NPC cells 
and enhances the radiosensitivity of NPC cells by tar-
geting IGF-1 [81]. miR-23a was found to be involved in 
NPC radiotherapy resistance because it targets IL-8 [80]. 
Mechanistically, miRNAs first regulate the radiotherapy 
sensitivity of NPC cells by affecting the transmission of 
apoptosis-related signals. For example, miR-185 pro-
motes radiotherapy sensitivity in NPC by regulating the 
Bcl-2 protein, an apoptosis suppressor [82]. In addition, 
miR-19b-3p has also been found to regulate Bcl-2 fam-
ily proteins to inhibit radiotherapy sensitivity in NPC 
[83]. Second, miRNAs affect the sensitivity of NPC cells 
to radiotherapy by regulating DNA double-strand break 
repair. DNA repair in NPC cells after radiotherapy is 
mainly maintained by the telangiectasia mutated (ATM) 
and ataxia-telangiectasia mutated and Rad3-related 
(ATR) signalling pathways [84]. Zhou et  al. [85] found 
that EBV-miR-BART8-3p could reduce the sensitivity 
of NPC cells to radiotherapy by regulating the activity 
of the ATM/ATR pathway. Furthermore, miRNAs can 
affect the radiosensitivity of NPC cells by regulating the 
cell cycle because cells with different cell cycle character-
istics have different sensitivities to radiotherapy. A study 
found that miR-188 can lock NPC cells in the G1/S phase 
by inhibiting retinoblastoma protein (Rb) [86]. Moreo-
ver, another study found that miR-23a keeps cells in the 
G2-M phase by activating the IL-8/Stat3 pathway, thus 
sensitizing NPC cells to radiotherapy [87]. At present, 
many researchers are trying to find additional miRNAs 

that can function as potential radiotherapy sensitiza-
tion targets for NPC [78]. For instance, miR-19b-3p was 
found to enhance radiotherapy resistance in NPC by 
activating the TNFAIP3/NF-κB axis [83]. Qu et  al. [88] 
found that miR-205 is upregulated in radiotherapy-resist-
ant NPC cells and can directly inhibit PTEN to increase 
radiotherapy resistance in NPC. miR-20a-5p can enhance 
the radiotherapy resistance of NPC cells by targeting the 
RAS oncogene family member Rab27B, which is asso-
ciated with radiotherapy resistance of NPC and is also 
upregulated in radiotherapy-resistant NPC cell lines [89]. 
In addition, miR-193a-3p can attenuate the radiotherapy 
sensitivity of NPC cells by targeting the SRSF2 gene and 
hypoxia signalling pathways [90]. Therefore, enhancing 
the sensitivity of NPC cells to radiotherapy by targeting 
these miRNAs is a promising approach.

Crosstalk between miRNAs and key components 
of the PI3K/AKT/mTOR signalling pathway
There are some interactions between miRNAs and the 
PI3K/AKT/mTOR signalling pathway (Fig. 1). For exam-
ple, PI3K and its downstream components, such as AKT 
and mTOR, can be directly targeted by some miRNAs, 
and miRNA function can also be influenced by the PI3K/
AKT signalling pathway. This interaction has critical 
roles in some cellular events, such as proliferation, apop-
tosis, and autophagy. Many miRNAs can either inhibit 
or activate the PI3K/AKT/mTOR signalling pathway by 
regulating its essential components. Regarding prolif-
eration, Lv et  al. [91] found that miR-520a-3p inhibited 
the proliferation of non-small-cell lung cancer through 
the PI3K/AKT/mTOR pathway. Sun et  al. [92] found 
that miR-365 inhibits the PI3K/AKT pathway by target-
ing IGF-I, thereby inhibiting cell proliferation. In addi-
tion, it was found that miR-660-5p could promote breast 
cancer cell proliferation through the PI3K/AKT/mTOR 
pathway [93]. Therefore, miRNAs regulating the PI3K/
AKT signalling pathway play an important role in regu-
lating tumour cell proliferation. Regarding apoptosis, Jing 
et al. [94] found that miR-26a-5p regulates apoptosis by 
inhibiting the PI3K/AKT pathway in endothelial cells. 
Zhang et  al. [95] found that miR-217 can inhibit apop-
tosis through the Toll-like receptor (TLR) 4/PI3K/AKT/
NF-kB pathway in atherosclerotic endothelial cells. In 
addition, there are many miRNAs in NPC that affect the 
occurrence and development of tumours by inhibiting 
apoptosis. Zuo et  al. [96] found that miR-155 inhibited 
the apoptosis of NPC cells through the PTEN-PI3K/AKT 
pathway. Therefore, an in-depth study of the mechanism 
by which mRNAs that regulate the PI3K/AKT signal-
ling pathway regulate tumour cell apoptosis will provide 
a solid foundation for clinical applications. Regard-
ing autophagy, many studies have shown that miRNAs 
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play an important role in regulating PI3K/AKT/mTOR-
mediated autophagy. Studies have shown that miRNA-
mediated gene regulation can affect the AKT pathway, 
generating an AKT-miRNA regulatory network [97]. Gu 
et  al. [98] found that miR-21 can inhibit autophagy by 
regulating the PI3K/AKT/mTOR pathway to regulate 
the resistance of gastric cancer cells to cisplatin. Meng 
et al. [99] found that miR-22 inhibits autophagy through 
the PI3K/AKT/mTOR pathway, thereby mediating cispl-
atin resistance in osteosarcoma. In addition, miR-21 also 
inhibits breast cancer cell autophagy through the PI3K/
AKT/mTOR pathway and sensitivity to chemothera-
peutic drugs [100]. Therefore, miRNAs that regulate the 
PI3K/AKT/mTOR signalling pathway play an important 
role in regulating the drug resistance of tumour cells. 
It was found that miR-338 can regulate the PI3K/AKT/
mTOR pathway to inhibit autophagy in cervical can-
cer, suggesting that miR-338 can be used as a therapeu-
tic target for cervical cancer [101]. Studies have found 
that many miRNAs can target PTEN to affect the PI3K 
pathway in cancer [102, 103]. miR-424-5p is a potential 
tumour suppressor gene that inhibits the development of 
breast cancer cells by regulating autophagy mediated by 
the PTEN/PI3K/AKT/mTOR pathway. miR-181 inhibits 
autophagy in non-small-cell lung cancer by promoting 
PTEN/PI3K/AKT/mTOR signalling to affect the occur-
rence and development of tumours [104]. However, Liao 
et al. [105] found that miR-381 can promote autophagy in 
prostate cancer cells by regulating the PI3K/AKT/mTOR 
signalling pathway. Therefore, miRNAs not only promote 
but also inhibit PI3K/AKT/mTOR-mediated autophagy 
in tumours.

The specific effects of this pathway on miRNA are 
not very clear. However, a study found that rapamycin, 
an mTOR inhibitor, significantly changed the miRNA 
expression profiles in cancer cells [106]. Furthermore, 
another study found that loss of tuberous sclerosis com-
plex (TSC) leads to extensive suppression of the expres-
sion of precursor and mature miRNAs [107]. More 
interestingly, miRNA biogenesis can be increased by 
targeting mutated Raptor (an essential component of 
mTORC1) [108]. Studies have found that Drosha can 
mediate the ubiquitination of RNases, while mTOR can 
target and inhibit them [108]. These studies have revealed 
interactions between the PI3K/AKT/mTOR signalling 
pathway and miRNA biogenesis, though the field is still 
in its infancy.

Long noncoding RNAs (lncRNAs) are important non-
coding RNAs that can indirectly regulate the PI3K/AKT/
mTOR signalling pathway by targeting and adsorbing 
miRNAs. Some studies have found that tumour cells 
can regulate exosomal transfer of miRNA from fibro-
blasts by expressing lncRNAs, and the miRNAs can 

further regulate PI3K/AKT/mTOR signalling to affect the 
tumour microenvironment [109, 110]. In addition, other 
studies have found that lncRNAs can regulate PI3K/
AKT/mTOR signalling through targeted adsorption of 
miRNAs, thereby affecting the growth and proliferation 
of a variety of tumour cells, including pharyngeal squa-
mous cell carcinoma cells [111, 112]. However, there has 
been no report about lncRNAs regulating PI3K/AKT/
mTOR signalling in NPC, and thus, the topic is worthy of 
exploration.

Crosstalk between PI3K/AKT signalling and miRNAs in NPC 
pathological processes
The PI3K signalling pathway plays an important role in 
balancing cell survival and apoptosis to affect the path-
ological processes of NPC [113, 114]. At the same time, 
miRNAs have a substantial impact on the occurrence 
and development of NPC because they regulate the PI3K 
pathway [115]. Therefore, this section will explore the 
crosstalk between tumour suppressor and oncogenic 
miRNAs and the PI3K pathway in NPC (Table 1).

Tumour suppressor miRNAs and PI3K/AKT signalling
Studies have shown that tumour suppressor miRNAs 
regulating the PI3K/AKT signalling pathway have a sub-
stantial impact on the growth, apoptosis, metastasis, 
and drug resistance of NPC cells [116, 118]. It was found 
that miR-3188 was downregulated in head and neck 
tumours, non-small-cell lung cancer, breast cancer, and 
liver cancer and inhibited tumour cell growth [130–132]. 
Recently, miR-3188 was identified as a target of mTOR 
signalling that can inhibit the proliferation and chemore-
sistance of NPC cells by targeting the mTOR-PI3K/AKT-
c-JUN signalling pathway [116]. In addition, it has been 
reported that miR-331-3p downregulation in NPC cells is 
related to increased tumour cell survival and metastasis. 
Mechanistically, upregulation of miR-331-3p induced cell 
apoptosis while preventing cancer cell invasion by target-
ing the elF4B gene and then inhibiting the PI3K/AKT sig-
nalling pathway [117]. Consistently, Ma et al. [133] found 
that miR-34a promoted cell proliferation and inhib-
ited apoptosis in papillary thyroid carcinoma through 
the PI3K/Akt/Bad pathway. However, Jiang et  al. [118] 
found that miR-34a inhibited cell invasion and EMT 
by targeting AXL/PI3K/AKT/Snail signalling in NPC. 
Furthermore, there was a negative association between 
miR-122 expression and NPC growth. The expres-
sion of miR-122 was considerably suppressed in NPC 
cells. Upregulated expression of miR-122 led to reduced 
tumour progression and metastasis by downregulating 
TRIM29 and blocking PI3K/AKT signalling [119, 120]. 
A study indicated that TRIM29 upregulated PI3K/AKT 
signalling by reducing PTEN expression and increasing 
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the levels of phosphorylated AKT, p70S6K, and 4E-BP1 
[134]. According to the study, miR-375 effectively 
repressed colorectal cancer development by targeting the 
PI3K/AKT signalling pathway [121]. Upregulated miR-
375 expression led to USP1 downregulation, and miR-
375 overexpression inhibited NPC cell migration and 
invasion by suppressing PI3K/AKT signalling [135]. The 
study also found that miR-206 directly targets IGF-1, a 
PI3K/AKT pathway activator, and promotes NPC radio-
sensitization [81]. Therefore, miR-206 is expected to be a 
target for radiotherapy sensitization in NPC. According 
to current studies [136, 137], miR-29a has both inhibit-
ing and promoting effects in tumours, including cervical 
cancer and breast cancer. However, Shi et al. [122] found 
that high expression of miR-29a in NPC cells inhibited 
cell growth and increased apoptosis. Mechanistically, 
miR-29a targets VEGF and inhibits the activation of the 
PI3K/AKT and JAK/STAT pathways. miR-16 has been 
identified as a tumour suppressor gene, and its main role 
is to induce apoptosis by targeting Bcl-2 [138]. He et al. 
[123] aimed to further explore the mechanism of miR-16 
in NPC and found that miR-16 inhibited the growth of 
NPC cells via the PI3K/AKT pathway by directly target-
ing fibroblast growth factor 2 (FGF2). Together, these 
results indicate that suppressor miRNAs that regulate the 
PI3K/AKT pathway suppress NPC carcinogenesis and 
progression, thereby representing potential targets for 
miRNA-based therapy for NPC.

Oncogenic miRNAs and PI3K/AKT signalling
PTEN is a potent tumour suppressor and contributes to 
the regulation of cell survival, apoptosis, proliferation, 

metabolism, and migration by suppressing oncogenic 
PI3K signalling [139]. Moreover, many studies have indi-
cated that negative regulation of PTEN is related to can-
cer progression in NPC patients [140, 141]. Furthermore, 
PTEN was identified as a potential target for oncogenic 
miRNAs in patients with NPC. For instance, miR-144-3p, 
miR-155, miR-205-5p, and miR-144, oncogenic miRNAs 
that are overexpressed in some cancers, induce NPC 
cell invasion, migration, and proliferation but restrain 
apoptosis directly by targeting the PTEN tumour sup-
pressor, leading to upregulation of PI3K/AKT signalling 
[96, 124–126]. Studies have found that miR-144-3p is sig-
nificantly overexpressed in NPC tissues and can enhance 
the proliferation and migration of NPC cells by targeting 
PTEN [124]. Zuo et al. [96] found that high expression of 
miR-155 in NPC cells promotes proliferation and inhibit 
apoptosis by targeting the PTEN/PI3K/AKT pathway. 
Some studies have found that miR-144 can inhibit PTEN 
signalling and promote cell proliferation and migration 
[126, 142]. Zhang et  al. [125] found that miR-205-5p 
can promote the EMT of cisplatin-resistant NPC cells 
through the PI3K/AKT pathway and target PTEN. NPC 
is an Epstein–Barr virus (EBV)-associated malignancy 
with characteristic early metastasis. Consistently, Cai 
et al. [127, 143] indicated that EBV-miR-BART7-3p and 
EBV-miR-BART1, which are highly expressed in NPC, 
enhance NPC cell migration and invasion directly by tar-
geting PTEN to modulate PI3K/AKT signalling.

In another study, Huang et al. [128] indicated that miR-
192 significantly induces PI3K/AKT signalling by sup-
pressing RB1 protein expression in NPC cells. Lyu et al. 
[129] showed that upregulation of the oncogenic miRNA 

Table 1 miRNAs regulating the PI3K/AKT signalling pathway in the pathogenesis of NPC

miRNA Target Molecular alteration Function Reference

miR‑3188 mTOR Downregulation Inhibits proliferation and chemoresistance [116]

miR‑331‑3p elF4B Downregulation Inhibits survival and metastasis [117]

miR‑34a AXL Downregulation Inhibits invasion and EMT [118]

miR‑122 TRIM29 Downregulation Inhibits progression and metastasis [119, 120]

miR‑375 USP1 Downregulation Inhibits migration and invasion [121]

miR‑206 IGF1 Downregulation Promotes radiosensitization [81]

miR‑29a VEGF Downregulation Inhibits cell proliferation [122]

miR‑16 FGF2 Downregulation Inhibits cell proliferation [123]

miR‑144‑3p PTEN Upregulation Promotes cell proliferation and invasion [124]

miR‑155 PTEN Upregulation Promotes proliferation and inhibits apoptosis [96]

miR‑205‑5p PTEN Upregulation Promotes the EMT [125]

miR‑144 PTEN Upregulation Promotes cell proliferation and migration [126]

EBV‑miR‑BART7‑3p PTEN Upregulation Enhances cell migration and invasion [127]

EBV‑miR‑BART1 PTEN Upregulation Enhances cell migration and invasion [127]

miR‑192 RB1 Upregulation Induces cell growth, invasion, and metastasis [128]

miR‑93 TGFβR2 Upregulation Inhibits apoptosis [129]
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miR-93 induces NPC cell growth, invasion, metasta-
sis, and EMT-like processes by suppressing TGFβR2 by 
promoting the PI3K/AKT pathway. Additionally, Yang 
et  al. [144] found that EBV-encoded LMP1 upregulates 
miR-21 to increase the resistance of NPC cells to cispl-
atin-induced apoptosis by inhibiting PDCD4 and Fas-L 
activity through the PI3K/AKT/FOXO3a pathway.

Conclusion and perspective
NPCs mostly occur in Southeast Asia and have a high 
degree of malignancy; thus, they seriously endanger 
people’s lives and health [145]. The guidelines recom-
mend radiotherapy and nonspecific cytostatic drugs, 
which seriously reduce the quality of life of patients and 
incur massive treatment costs. In addition, radiation 
resistance and chemotherapy resistance lead to unsatis-
factory treatment effects in some patients [146]. Due to 
the prominent role of the PI3K/AKT/mTOR pathway in 
cell proliferation and survival, inhibitors of this pathway 
are anticipated to be effective treatments for NPC [147]. 
Preclinical trials showed that PI3K inhibitors decreased 
cell proliferation, decreased xenograft tumour growth, 
and increased radiosensitivity [148]. In addition, Liu 
et  al. [149] found that the dual PI3K/mTOR inhibitors 
GSK216458 and PKI-587 inhibited the growth of NPC 
cells and enhanced their radiosensitivity. Radiotherapy 
combined with dual PI3K/mTOR inhibitors may be a 
promising treatment strategy for NPC. Preclinical evalu-
ation showed that the mTOR-PI3K inhibitor BEZ235 
caused G1 arrest and increased apoptosis in most NPC 
cell lines [150]. Regarding AKT inhibitors, the preclinical 
results of studies in which such inhibitors are combined 
with radiotherapy and administered to cells with abnor-
mally elevated levels of p-Akt and P-S6 kinase are very 
promising [151]. For ethical reasons, AKT inhibitors are 
currently only used in very advanced patients. Further-
more, another study found that Rad001, an mTOR inhibi-
tor, had a synergistic effect on cisplatin-induced growth 
inhibition of NPC cells and inhibited the growth of cispl-
atin-resistant and cisplatin-sensitive NPC cell lines [152]. 
These results suggest that mTOR inhibitors combined 
with cisplatin may be an effective treatment strategy for 
NPC. Future trials should focus on combining radiother-
apy with a variety of targeted PI3K/AKT/mTOR pathway 
inhibitors to take advantage of possible synergistic effects 
and investigate whether patients with radiation resistance 
can also benefit from these combinations.

Increasing evidence indicates the significance of miR-
NAs in the regulation of the PI3K/AKT/mTOR signalling 
pathway in NPC. The PI3K/AKT/mTOR signalling path-
way is activated by enzyme-linked receptors, which have 
substantial effects on tumour cell proliferation, apoptosis, 

and autophagy. These effects cause diverse outcomes, 
creating the complex characteristics of NPC. Abnormal 
changes in this pathway may underly radiotherapy resist-
ance in NPC. Multiple miRNAs can inhibit or promote 
pathway activation in the same manner as external mol-
ecules. Interestingly, there are many dysregulated miR-
NAs in NPC cells that have extremely strict effects on 
the PI3K/AKT/mTOR pathway. In this review, many 
miRNAs regulating the PI3K/AKT/mTOR pathway were 
presented, and their importance in NPC pathology was 
discussed. In summary, the roles of miRNA-PI3K inter-
actions in NPC were highlighted in this review, and novel 
strategies for NPC diagnosis and therapy were presented. 
Currently, miRNAs have promise in clinical applications, 
for example, the application of miRNAs as diagnostic 
biomarkers and the application of miRNA-based drugs 
that inhibit oncogenic miRNAs or promote tumour sup-
pressor miRNAs. In addition, further study of the inter-
action between miRNAs and the PI3K pathway and how 
it affects the occurrence and development of NPC will 
accelerate the clinical application of strategies related to 
regulatory miRNAs. Therefore, future studies may focus 
on (1) identifying the best miRNA candidates for NPC 
diagnosis and treatment, (2) identifying the mechanisms 
underlying miRNA-PI3K interactions, and (3) developing 
new miRNA-based treatment strategies to control patho-
logical response and better manage NPC.

In addition, many researchers have a strong inter-
est in reversing dysregulation of miRNAs regulat-
ing the PI3K/AKT/mTOR pathway in NPC. Strategies 
related to exosomes may be useful [153]. Exosomes 
are small biological vesicles that can carry miRNAs, 
DNA, metabolites and small molecule drugs [154, 155]. 
They are very important for information transmission 
between cells. Studies have shown that exosomes have 
cell selectivity and tissue specificity and can accurately 
transport “goods” from parental cells to recipient cells 
[156, 157]. In the future, researchers may be able to 
load miRNAs that enhance the radiotherapy sensitiv-
ity of NPC cells into exosomes so that NPC cells can 
uptake these miRNAs and overexpress them, enhancing 
therapeutic effects in patients with radiation resistance. 
However, the technologies needed for the separation, 
purification and drug loading of specific exosomes do 
not yet exist and thus are worthy of further discussion.
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