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Abstract

Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery,
radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted
great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer,
as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular
type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of
estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human
epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven
ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug
resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The
emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the
therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other
malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic
virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying
their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment,
as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce
specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of
other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well
as other cancers.
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Background
Oncolytic virotherapy is a new biological treatment
method under extensive research. Oncolytic viruses
(OVs) are natural or artificially modified viruses that se-
lectively infect and destroy tumor cells, rarely damaging
normal cells. The tendency of OVs to infect tumor cells
is attributed to the specific cytokines expressed by ma-
lignant cells and damaged signal pathways that lead to

the destruction of cellular antiviral defense, thereby
making tumor cells particularly susceptible to OVs [1,
2]. OVs were first discovered in patients with leukemia,
whose symptoms improved after influenza infection [3].
Later, Italian doctors found that rabies vaccine could in-
hibit cervical cancer. This phenomenon led scientists to
postulate that certain viruses have a tumor-resistant
function. In subsequent studies, many viruses with the
ability to kill tumor cells were discovered, leading to the
emerging concept of OV therapy. Initially, studies fo-
cused on the antitumor effect of wild type viruses. A
clinical trial in the 1950s used a wild type and non-

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: pangda@ems.hebmu.edu.cn; Shoupingxu@hrbmu.edu.cn
†Shengye Jin, Qin Wang and Hao Wu contributed equally to this work.
2Department of Breast Surgery, Harbin Medical University Cancer Hospital,
150 Haping Road, Harbin 150081, China
Full list of author information is available at the end of the article

Jin et al. Biomarker Research            (2021) 9:71 
https://doi.org/10.1186/s40364-021-00318-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s40364-021-00318-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:pangda@ems.hebmu.edu.cn
mailto:Shoupingxu@hrbmu.edu.cn


engineered adenoidal pharyngeal conjunctival virus to
treat cervical cancer [4]. With the development of gen-
etic engineering, recombinant selectivity-enhanced vi-
ruses and therapeutic transgene-delivering ‘armed’ OVs,
were widely studied [5–7]. Based on the nucleic acid
types, the most widely studied OVs can be divided into
double-stranded (ds) DNA viruses [adenovirus, herpes
simplex virus (HSV), and vaccinia virus], dsRNA viruses
[reovirus], positive-sense single-stranded (ss) RNA vi-
ruses [coxsackievirus], and negative-sense ssRNA viruses
[vesicular stomatitis virus (VSV), measles virus (MV),
Maraba virus, and Newcastle disease virus (NDV) [8].
Breast cancer has a high prevalence rate and the high-

est mortality rate in women [9]. Breast cancer can be di-
vided into the molecular types—luminal A, luminal B,
ERBB2+, and triple negative breast cancer (TNBC)—
based on different expression profiles of the estrogen re-
ceptor (ER), progesterone receptor (PR), and human epi-
dermal growth factor receptor 2 (HER2) [10]. TNBC is
found in approximately 15% of breast cancer patients
and is characterized by no expression of ER and PR as
well as no amplification of the HER2 gene [11, 12].
TNBC has a more aggressive clinical course, greater ten-
dency to metastasize to other organs, higher risk of dis-
tant recurrence, earlier recurrence, and poor prognosis
than other forms of breast cancer [13–15]. Currently,
commonly used clinical treatment methods, such as sur-
gery, radiotherapy, and chemotherapy, have not achieved
a satisfactory outcome for this cancer subtype. Although
a better pathologic complete response rate can be
achieved by neoadjuvant chemotherapy, overall progno-
sis remains poor [16]. Hence, new targets of TNBC have
been studied, however, no success has yet been reported
in clinical practice. Currently, the treatment approach
primarily relies on conventional chemotherapy [17].
However, disease progression, metastasis, or recurrence
occurs due to the occurrence of chemotherapeutic drug
resistance. Specifically, P-glycoprotein (P-gp), multidrug-
resistant protein-1 (MRP1), and breast cancer resistance
protein (BCRP) contribute to the development of che-
motherapeutic resistance by increasing drug efflux and,
subsequently, TNBC metabolism, leading to the replace-
ment of the chemotherapeutic agents cannot benefit pa-
tients more [18]. Hence, an urgent need exists for the
development of novel treatment strategies for TNBC.
Oncolytic virotherapy may represent one such strategy
for patients presenting with chemotherapeutic drug re-
sistance. Furthermore, combination oncolytic viral ther-
apy may be effective for TNBC patients who have
undergone immunotherapy with poor outcomes as this
strategy facilitates activation of the immune response via
OV infection. Additionally, TNBC patients with poor
physical conditions who are unable to tolerate surgical
radiotherapy or chemotherapy may be candidates for

oncolytic virotherapy as these viruses have been shown
to elicit minimal impairment of healthy bystander cells
with few adverse side effects.
Currently, a few OVs have been approved for clinical

application. Oncorine (H101), a recombinant oncolytic
adenovirus was approved for the treatment of head and
neck cancer by the China Food and Drug Administra-
tion in 2005 [19]. Talimogenelaherparepvec (T-VEC), an
oncolytic HSV type-1, was approved by the United
States Food and Drug Administration for the treatment
of melanoma lesions in the skin and lymph nodes in
2015 [20]. Hence, given the well-established therapeutic
efficacy of OVs in malignant tumors, they represent a
therapeutic approach with significant potential for the
treatment of solid tumors, including those associated
with breast cancer. The present review highlights the an-
titumor mechanisms of OVs and focuses primarily on
research progress regarding OVs in TNBC. It further as-
sesses the feasibility and research status of oncolytic vir-
otherapy alone and in combination with other therapies.
Finally, an introduction to clinical trials examining the
efficacy of novel OVs in other malignant tumors, is pro-
vided to further demonstrate the potential of OVs for
the treatment of TNBC.

Antitumor mechanisms of OVs
Initially, the understanding of the antitumor effect of
OVs was limited. They were considered to replicate and
directly lyse the tumor cells after infecting them, a
process termed oncolysis. However, further research re-
vealed that the antitumor effect of OVs is the result of
multiple mechanisms (Fig. 1), which are reviewed here.

Effect of OVs on vasculature
Tumor growth requires a large supply of nutrients and
oxygen as well as the excretory system for excreting me-
tabolites generated due to the infinite proliferative char-
acter of tumor cells. Host vasculature is inadequate to
meet these demands; thus, angiogenesis is initiated. Con-
sidering the role of angiogenesis in tumors, its inhibitors,
such as Bevacizumab, were developed for cancer treat-
ment. OVs were revealed to play an antitumor role by
affecting tumor vessels. Studies revealed that some OVs
destroy tumor vasculature via the infection and direct
lysis of tumor-associated endothelial cells (ECs) as well
as lead tumor cells to inflammatory responses and re-
lease of tumor necrosis factor (TNF)-α and interferon
(IFN)-γ [21]. In addition, OVs can reduce the expression
of vascular endothelial growth factor (VEGF), thereby
inhibiting angiogenesis [22]. Benencia et al. demon-
strated that mutant HSV-1716 virus (double g34.5 nega-
tive) infects tumor endothelium, and causes destruction
of tumor vasculature both in vitro and in vivo [23]. In
addition, OV-induced influx of neutrophils can lead to
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coagulation and loss of tumor perfusion [24, 25]. Fur-
thermore, a natural tumor vasculature targeting capacity
has been reported for VSVs, leading tumor blood vessel
coagulation and, ultimately, vascular collapse [25, 26].
Thus, OVs play an antitumor role by affecting tumor
vessels.

Interaction between OVs and immune system
Another remarkable antitumor mechanism of OVs is
their induction of immune response. OV infection re-
cruits innate immune cells, such as natural killer (NK)
cells and neutrophils that form a defense system for
virus elimination. Meanwhile, some of these cells also
produce an antitumor effect. For instance, NK cells kill
malignant cells by releasing cytotoxic granules, such as
perforin and granzymes, as well as by secreting death re-
ceptor ligands (FasL and TNF-related apoptosis inducing
ligand (TRAIL)) and cytokines, such as TNF-α,
granulocyte-macrophage-colony-stimulating factor (GM-
CSF), and IFN-γ [27, 28]. Additionally, neutrophils were
shown to cause tumor cell death via TNF-α expression
that led to localized acute ischemia due to perfusion loss

[26, 29]. Simultaneously, OV-induced tumor cell lysis re-
sults in the release of viral pathogen-associated molecu-
lar patterns (PAMPs), danger-associated molecular
patterns (DAMPs), and tumor-associated antigens
(TAAs), which play a vital role in activating antitumor
immune response. PAMPs, comprising virus surface
structures such as capsids, viral genetic material, and
metabolites generated during viral replication, are recog-
nized by pattern recognition receptors (PRRs), such as
toll-like receptors (TLRs), IFN-inducible dsRNA-
activated protein kinase, and NOD-like receptors, that
are expressed on dendritic cells (DCs) [30]. The inter-
action between PRRs and PAMPs stimulates DCs to pro-
duce cytokines such as TNF-α, interleukin (IL)-12, and
type-1 IFNs (IFN-α and IFN-β) [31], which in turn pro-
motes DC maturation to further release proinflamma-
tory cytokines, thereby activating and recruiting more
NK cells or DCs and, thus, amplifying the antitumor im-
mune response. DAMPs, including ATP, calreticulin
(CRT), and high mobility group protein B1 (HMGB1),
are secreted or released by dying, stressed, or injured
cells [32]. ATP, CRT, and HMGB1 bind to P2RX7,

Fig. 1 Underlying mechanisms responsible for the antitumor effects of oncolytic viruses (OVs). (1) OVs can directly infect and lyse cancer cells. (2)
OVs infect and lyse vascular endothelial cells, and recruit neutrophils, which promote coagulation and thrombosis to destroy blood vessels and
inhibit angiogenesis. (3) OVs recruit dendritic cells (DCs), macrophages, neutrophils and T cells into the tumor microenvironment thus
transforming “cold” tumors into “hot” tumors. (4) Lysed cancer cells release DAMPs/PAMPs/TAAs, which are recognized by DCs resulting in
activation of CD4 + T and CD8 + T cells to kill cancer cells. (5) OVs can be armed with transgene target gene expression, which enhances the
antitumor effect
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CD91, and TLR4, respectively. ATP can stimulate the re-
cruitment of DCs to cancer cells, CRT enhances the en-
gulfment of tumor antigens by DCs, and HMGB1
promotes antigen presentation to T cells [33]. Subse-
quently, DCs expose TAAs via MHC-I molecules to T
cell receptors on cytotoxic CD8+ T cells (cytotoxic T
lymphocytes, CTLs) to induce the differentiation of
naïve CTLs to effector CTLs. The antitumor activity of
CTLs is achieved either directly by releasing cytotoxic
particles containing perforin and granzyme or indirectly
by secreting cytokines such as IFN-γ, TNF-α, and IL-2
[34, 35]. These cytokines induce tumor cell apoptosis
and/or activate anticancer immune response [36], which
serves as a bridge between the effects of OV on innate
immunity and adaptive immunity.

OVs ‘heat up’ tumors
In the past 5 years, the novel immune-based concept of
‘hot’ and ‘cold’ tumors has been proposed. Tumors are
classified based on the distribution of immune cells
within the tumor site by determining immune cell infil-
tration and Immunoscore ranges from I0 (for low im-
mune cell densities with the absence of both cell types
in both regions) to I4 (high immune cell densities in
both locations). Tumors with non-infiltrates correspond-
ing to Immunoscore I0 are designated as ‘cold’ tumors,
while highly infiltrated tumors corresponding to Immu-
noscore I4 are called ‘hot’ tumors [37]. Due to the lack
of immune cells in the tumor microenvironment (TME),
‘cold’ tumors are not sensitive to immune response, a
characteristic that is responsible for the unsatisfactory
effect of several treatment methods in these types of tu-
mors. However, OVs can override this condition. That
is, following OV infection, the immune response first re-
cruits neutrophils and macrophages to eliminate the
OVs and infected cells. Meanwhile, DCs sense viral
PAMPs and produce type I IFNs capable of directly acti-
vating NK cells, which subsequently produce IFN-γ and
TNF-α to further activate and recruit macrophages, DCs
and T cells [2]. Since OVs have a greater propensity to
infect tumor cells, these responses ultimately result in
the infiltration of immune cells to the tumor microenvir-
onment (TME). Thus, ‘cold’ tumors become ‘heated,’ en-
hancing the antitumor immune response.

OVs carry target gene
Viruses can carry foreign genes, replicate in the host,
and are readily modified in vitro. As such, viruses are
often used as vectors for genetic engineering, the rapid
development of which has facilitated the application of
OVs for the induction of antitumor effect by arming
them with target genes that either encode antitumor cy-
tokines or promote antitumor immune responses [24,
38, 39]. The success of T-VEC, a GM-CSF-armed

oncolytic HSV, has clearly demonstrated feasibility of
this method. Furthermore, a recombinant VSV express-
ing IFN-β was reported to exhibit oncolytic activity
against lung cancer in vivo and in vitro [40].
In summary, OVs represent potential candidates for

the treatment of cancers owing to their abilities to repli-
cate in tumor cells causing their direct lysis, destroy
tumor vasculature, activate innate and adaptive immune
responses to generate an antitumor effect, converting
‘cold’ tumors to ‘hot’ ones, and function as a vector, car-
rying target genes and expressing antitumor related fac-
tors in the tumor cells. These characteristics and
antitumor mechanisms make OVs advantageous com-
pared to other treatment methods, including radiother-
apy, chemotherapy, and endocrine therapy. Moreover,
their preference for tumor cells makes OVs highly ef-
fective, with fewer adverse events and drug resistance.
Further, since viruses actively replicate themselves after
entering host cells, causing subsequent activation of the
immune system, oncolytic virotherapy is also capable of
maintaining long-term antitumor effects.

OVs in TNBC
TNBC, a high-risk breast cancer subtype, has limited treat-
ment options and, thus, may benefit from oncolytic vir-
otherapy. Indeed, several studies on the application of
oncolytic virotherapy in TNBC have demonstrated the
feasibility of this treatment strategy. Here, we introduce dif-
ferent OVs that have been studied in TNBC. In addition,
we summarize OVs that have reportedly achieved good re-
sults in preclinical studies (Table 1) [41–60].

Adenovirus
Adenoviruses dsDNA viruses are the most studied OVs
in breast cancer. Several studies have employed insertion
of genes that express antitumor or immune regulatory
cytokines in OVs to enhance their effects. IL-24 is an
important immune mediator and a cancer suppressor
that can specifically inhibit the growth of tumor cells
and induce cancer cell apoptosis [61, 62]. Zhu et al. con-
structed a type 5 adenovirus recombined to carry the IL-
24 gene (CNHK600-IL24) that replicates only in tumor
cells; they established and treated a TNBC model in
nude mice and a metastatic model of breast cancer, con-
cluding that CNHK600-IL24 enhanced antitumor activ-
ity and improved survival in vivo [41]. These results
clearly demonstrated the potential of adenoviruses to
treat TNBC. Furthermore, tropism of OVs on tumor
cells can be enhanced by replacing the endogenous pro-
moter with a tumor-specific promoter or enhancer. E2F-
1, an important transcriptional factor in the control of
cell cycle, proliferation, and carcinogenesis, is often over-
expressed in breast cancer tissues compared with normal
tissues [63]. Based on this observation, a new oncolytic
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adenovirus type 5 was recombined by replacing its pro-
moter with E2F-1 promoter and inserting IL-15, an im-
mune regulatory factor; IL-15 is a cytokine that regulates
adaptive immune response and inhibits the proliferation
of breast cancer cells via various immune cells [64, 65].
Yang et al. confirmed that this recombined OV select-
ively killed cancer cells while simultaneously releasing
IL-15, and enhancing the inhibitory effect on TNBC
[46]. Moreover, TRAIL was suggested to induce apop-
tosis in TNBC with a mesenchymal phenotype [66]. This
was tested by constructing modified adenoviruses (P55-

HTERT-HRE-TRAIL) harboring TRAIL gene that was
subsequently used to infect invasive breast tumor MDA-
MB-231, a TNBC cell line [67]. Post-infection, the
in vitro adenovirus concentration and expression of
TRAIL increased. Further, the decrease in cell viability
confirmed its oncolytic potency [42]. Meanwhile, an
in vivo orthotopic breast tumor model was established
in nude mice; the results of which revealed that the virus
significantly restricted tumor growth, thus, corroborating
the in vitro results. Additionally, as TNBC has a high
metastatic risk, the same study evaluated the anti-

Table 1 Summary of OVs against TNBC

Virus Receptor Vector Modification Mechanism Ref

Adenovirus Coxsackie and adenovirus receptor
(CAR), CD46, Desmoglein-2(DSG-2)

CNHK600-IL24 Arm with IL-24 Induce TNBC apoptosis [41]

p55-hTERT-HRE-TRAIL Arm with P55-HTERT-
HRE-TRAIL

Target TNBC and induce
apoptosis

[42]

OBP-401 adenovirus Arm with the human
telomerase
reverse transcriptase
(hTERT) gene

Increase the targeting to
cancer cells

[43]

Ad5-10miR145T Carry ten miR-145-5p
target
sequences

Target miR-145-5P [44]

Ad.DCN Express decorin protein Promote the expression of
decorin

[45]

SG400-E2F/IL-15 Replace the endogenous
promoter with the E2F-1
promoter and arm with
IL-15 gene

Target E2F and promote
the expression of IL-15

[46]

Herpes simplex
virus

Herpes virus entry mediator
(HVEM), nectin1/2, heparan
sulfate proteoglycans (HSPG)

G47Δ Delete α47 and γ34.5
genes; Insert
Escherichia Coli LacZ
into ICP6

Enhance cytotoxicity to
tumor cells

[47, 48]

GD116 Insert MyD116 C-terminus Enhance the replication
and virulence

[49]

G47Δ-mIL12 Insert IL-12 into G47Δ Enhance antitumor
immune response

[50]

Vaccinia virus Glycosaminoglycans/ laminin,
macrophage receptor with
collagenous structure (MARCO)

VV40L Arm with CD40 ligand Target CD40 [51]

VG9-IL-24 Arm with IL-25 Induce apoptosis [52]

Reovirus Carbohydrates, Junction adhesion
molecule-A(JAM-A)

reo-dox Conjugate Doxorubicin Enhance cytotoxicity [53]

Vesicular
Stomatitis Virus

Low-density lipoprotein (LDLR) VSVd51 A mutation in the
matrix protein

Expands the tropism for
diverse cancer types

[54]

Measles virus CD46, nectin-4 rMV-SLAMblind Mutate R533A in the
H protein

Entry cancer cells through
nectin-4 receptor

[55]

rMV-BNiP3 Arm with BNiP3 Enhance the ability of
Inducing apoptosis

[56]

Newcastle
disease virus

Sialic acid (SA) rAF-IL12 Insert IL-12 Enhance anti-tumor
immune response

[57]

Maraba virus Low-density lipoprotein
receptor (LDLR)

MG1 Mutate G protein
(Q242R) and M protein
(L123W)

Improve virulence and
reduce the ability to kill
normal cells

[58, 59]

Coxsackievirus Coxsackie and adenovirus
receptor(CAR), Intracellular
adhesion molecule-1(ICAM-1)

CVA21 Natural strain Capable of lytic infection
of breast cancer cells

[60]

Jin et al. Biomarker Research            (2021) 9:71 Page 5 of 16



metastatic effect of the recombined OV and concluded
that P55-HTERT-HRE-TRAIL could restrict TNBC
growth and metastasis. Similarly, another study con-
firmed that green fluorescence protein-expressing
telomerase-specific adenovirus (OBP-401) selectively
kills cancer cells and has the ability to inhibit TMBC
tumor growth and metastasis [43].

Herpes simplex virus (HSV)
HSV, another dsDNA OV, is one of the only two OV
agents approved for clinical application. Nevertheless,
researchers continue to study its application in the treat-
ment of other tumors, including breast cancer. G47Δ, an
oncolytic HSV with the US11 promoter region, and dele-
tion of α47, inhibits tumor growth and increases survival
rate in vitro in human breast cancer MDA-MB-435 cells,
as well as in vivo in a mouse model generated by the im-
plantation of MDA-MB-435 cells or tumor xenografts
[68]. Additionally, target genes may be inserted into
HSVs to enhance the antitumor effect. In fact, a research
team designed a recombined HSV encoding an antitu-
mor cytokine IL-12, G471-mIL12, that efficiently infects
and destroys TNBC mammary tumor cells in vitro. In
vivo, primary tumor burden and metastasis in the 4 T1
syngeneic TNBC model was significantly reduced at all
stages of tumor development [50].

Vaccinia virus
Vaccinia virus is a unique dsDNA virus that can repli-
cate in the cell cytoplasm. As an OV, vaccinia virus has
great prospective application in the treatment of breast
cancer. As IL-24-armed adenovirus exhibited a marked
antitumor effect, the vaccinia virus strain Guang9 (VG9)
was designed as a vector for carrying IL-24 gene. This
recombined virus (VG9-IL-24) kills infected breast can-
cer cell lines without having any marked cytotoxic effect
on normal cells. Next, its antitumor effect was evaluated
in vivo by establishing an MDA-MB-231 xenograft
mouse model. The mice treated with VG9-IL-24 showed
slower tumor progression and longer survival periods
with a higher survival rate [52]. As MDA-MB-231 is a
TNBC cell line, the success of this research provided evi-
dence for possible application of vaccinia virus in TNBC
treatment. In fact, prior to this report, the ability of vac-
cinia virus to treat TNBC was already established. The
GLV-1 h68 oncolytic strain of vaccinia virus reportedly
replicates in, and kills, canine mammary tumor cells suc-
cessfully both in vitro and in vivo (nude mouse model)
[69]. Previously, many recombined vaccinia viruses, such
as GLV-1 h153 [70] and GLV-1 h164 [71], have been
tested in TNBC murine models. Through different artifi-
cial transformation methods, their ability to kill TNBC
cells in vitro and in TNBC murine models was

strengthened, enabling the investigation of their effect
and potential application in humans.

Reovirus
As a dsRNA OV, reovirus has the potential to be used as
a new treatment for breast cancer. A study found that
several breast cancer cell lines are susceptible to reovirus
infection, while normal breast epithelial cells did not ex-
press such characteristic, regardless of hormone receptor
status [72]. Moreover, reoviruses can target cancer stem
cells (CSCs), which are resistant to conventional clinical
treatment. Reoviruses inhibit CSCs and non-CSC cancer
cells with equal efficacy, and the sensitivity of CSCs to
reovirus therapy is as high as that of non-CSC cells [73].
Based on their killing effect on TNBC cell lines reported
in some studies, reoviruses can be considered for poten-
tial therapeutic application against TNBC [74]. In
addition, reoviruses increase survival and decrease the
incidence of leptomeningeal safely and effectively [75].
This evidence indicates that reoviruses have good pros-
pects for treatment of TNBC, which is difficult to treat
owing to its high invasion and metastasis ability.

Vesicular stomatitis virus (VSV)
VSV is a nonpathogenic negative-sense ssRNA virus. Its
characteristic sensitivity to the antiviral activity of type-1
IFNs in normal cells but insensitivity to tumor cells en-
sures its rapid replication in tumor cells [76]. Symptoms
are seen in a very small number of people affected with
VSV infections and the pathogenicity of virus is very low
and does not cause serious consequences. These advan-
tages make VSV an ideal OV. A recombinant replicating
VSV was found to selectively infect, replicate in, and kill
breast cancer cells expressing erbb2 [77]. Subsequent
studies investigated the ability of VSV to inhibit TNBC.
The cytotoxic activity of recombinant VSV (VSVd51)
was assessed in mouse and human TNBC cells, where
its impact on antitumor immune response was verified.
Through the recruitment of NK cells and CD8+ T cells,
VSV exerted a significant therapeutic effect. This effect
on the immune response suggested that VSV in combin-
ation with checkpoint inhibitors has the potential to
treat TNBC [54].

Measles virus (MV)
As early as 2006, reports suggested the potential of MV
to treat breast cancer. A study reported that infection
with an MV strain, which produces carcinoembryonic
antigen (MV-CEA), resulted in MDA-MB-231 cell death
in vitro. Further, they tested the antitumor ability of
MV-CEA in vivo by establishing subcutaneous MDA-
MB-231 xenografts, and concluded that MV-CEA had
potent therapeutic efficacy against TNBC both in vitro
and in vivo [78]. Further research revealed that these
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OVs enter cells via the signaling lymphocyte activation
molecule (SLAM) expressed on many immune-
associated cells, CD46 expressed on all nucleated cells,
and the poliovirus receptor-related protein 4 (PVRL4)
[79–81]. Based on this, another research group created
an MV selectively blind to SLAM (rMV-SLAM blind)
that used PVRL4 as a receptor but not CD46 to infect
TNBC cells; rMV-SLAM blind was found to decrease
the viability of breast cancer cell lines, without affecting
the viability of SLAM-positive lymphoid cells. Addition-
ally, rMV-SLAM blind demonstrated greater oncolytic
activity than that of wildtype MV as well as its safety
[82]. Collectively, these studies provided evidence in
support of MV as a candidate for TNBC treatment.

Newcastle disease virus (NDV)
NDV belongs to negative-sense ssRNA virus group. The
AF2240 strain is one of the most effective oncolytic
NDVs that is capable of stimulating apoptosis in breast
cancer cells [83, 84]. In TNBC cells, NDV AF2240 can
induce tumor regression through upregulation or down-
regulation of different cytokines, for example, through
impairment of IL-6 secretion [84]. To further enhance
the antitumor effect, the NDV was artificially modified.
Recently, its effect was investigated in breast cancer by
recombination with other genes capable of inducing the
expression of immune stimulants. In a recent study,
inserting IL-2 gene into the NDV genome, was found
to induce significant cytotoxicity against MDA-MB-
231, while limited cytotoxicity in normal MCF-10A
breast cell line. On further testing its antitumor effect
in vivo, they concluded, based on observation of
tumor size, that this recombined NDV markedly sup-
pressed 4 T1 cells [57].

Maraba virus
Maraba virus is a new OVs used in virotherapy and has
also been used to treat breast cancer. To verify the possi-
bility of neoadjuvant oncolytic virotherapy, a research
team used single direct intratumoral injection of Maraba
virus to patient-derived xenografts (PDXs) of TNBC.
They concluded that the injection of Maraba virus into
4 T1 tumors effectively initiated virus infection and kill-
ing of tumor cells. In subsequent experiments, they de-
veloped a rechallenge model to force the reemergence of
the disease. They concluded that neoadjuvant oncolytic
virotherapy using Maraba virus generated a relatively
persistent personalized immune response to kill tumor
cells [85]. This study posed a new question about the ef-
fective time period for oncolytic virotherapy— ‘is it bet-
ter to use OV before or after surgery?’ Additionally,
other OVs—reovirus, vaccinia virus, and adenovirus—
possess the ability to slow tumor growth, while vaccinia
virus, HSV, and adenovirus protected against rechallenge

and improved survival when administered prior to sur-
gery [86]. These results further illustrated the potential
of oncolytic virotherapy as a treatment, even neoadju-
vant treatment, for TNBC.

Coxsackievirus
Coxsackievirus is an enterovirus with positive-sense
ssRNA and has 29 subtypes. Because of its slight patho-
genicity to humans, the oncolytic effect of this virus was
relatively less studied. However, in upcoming years, gen-
etic engineering can enhance the selectivity of the vi-
ruses to tumor cells and reduce their pathogenicity,
making the use of coxsackievirus as an OV possible.
Coxsackievirus B3 (CV-B3) was genetically engineered
to inhibit many tumor cell types, including lung cancer
and endometrial cancer [87–89]. Coxsackievirus 21
(CVA21), a genetically unmodified OV, which was
shown to be an effective oncolytic agent against multiple
myeloma and melanoma [90, 91]. The therapeutic po-
tential of coxsackievirus for TNBC has also been veri-
fied. CVA21 could effectively inhibit TNBC cells not
only in vitro but also in mouse xenograft models [60].
Although only a few studies have reported the thera-
peutic effect of coxsackievirus on TNBC, they have dem-
onstrated its potential ability to treat TNBC.

Research progress of novel OVs in other cancers
In addition to the OVs mentioned above, many others
are currently being investigated for their clinical efficacy.
Although their successful application for the treatment
of TNBC remains to be confirmed, the findings thus far
in other malignant tumors suggest that they represent
additional potential candidates for TNBC treatment. For
instance, poliovirus, which can invade the central ner-
vous system and damage the motor neurons, was found
to possess antitumor properties, and suppress the
growth of breast cancer in vivo and in vitro using xeno-
grafts [92]. The antitumor effect of parvovirus has also
been verified in a variety of cancer models, including gli-
oma and pancreatic ductal adenocarcinoma [93, 94].
Similarly, a neuroendocrine cancer-selective oncolytic
picornavirus, Seneca Valley virus, exhibits marked in-
hibitory effects on small cell lung cancer [95]. Zika virus
has demonstrated oncolytic activity against glioblastoma
stem cells [96, 97]. Meanwhile, the oncolytic parvovirus
H-1PV has entered clinical trials targeting glioblastoma
and pancreatic cancer [98, 99]. Additionally, a nonhu-
man pathogen virus, bovine viral diarrhea virus (BVDV),
was reported to selectively induce death in human mye-
loma cell lines (HMCLs), while reducing tumor growth
in a mouse model by triggering apoptosis [100]. Another
OV, alphavirus M1, which contains a positive-sense
single-stranded RNA genome with nonstructural pro-
teins at the 5′ end and structural proteins at the 3′ end,
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can inhibit the growth of gliomas, as well as hepatic,
colorectal, and bladder cancers with no evidence of tox-
icity or serious adverse events in mice and nonhuman
primates [101]. Studies have also indicated that blue-
tongue virus is capable of infecting and selectively lysing
human hepatic carcinoma cells and prostate carcinoma
cells, as well as inhibiting human renal cancer cell
growth in vitro and in vivo [102–104]. Collectively, these
results provide significant support for the further investi-
gation of various OVs for the treatment of TNBC.

Combination therapy
Oncolytic virotherapy combined with radiotherapy and/or
chemotherapy
Due to the heterogeneity of cancer, the effect of mono-
therapy is often unsatisfactory, making combination
therapy undoubtedly the best choice for cancer treat-
ment. Meanwhile, the therapeutic potential of OVs can
further promote the progress of combination therapy.
The effect of such combination therapies have been
demonstrated in other cancers as well. For instance,
Mori et al. reported a case where a patient with plat-
inum resistant ovarian cancer, with a long history of
treatment who was frequently refractory to traditional
therapies, showed significant clinical response to com-
bined gl-onc1 OV therapy and chemotherapy [105]. Cur-
rently, in addition to surgery, chemotherapy is the most
commonly implemented method for the treatment of
TNBC. However, combinatorial OV and chemotherapy
may elicit synergistic effects, as demonstrated by a team
of researchers who combined paclitaxel, a commonly
used chemotherapeutic drug, with recombined oncolytic
adenovirus to treat gastric cancer in an orthotopic xeno-
graft model. They found that the combination therapy
reduced tumor size and strongly enhanced mitotic catas-
trophe induction due to compulsive cell cycle
mobilization of adenoviruses [106]. Moreover, the effect
of this combined treatment was superior to that of
monotherapy. Additionally, an oncolytic MV armed with
BNiP3 (rMV-BNiP3) was combined with paclitaxel to
treat TNBC. Compared with either treatment alone,
combination therapy induced higher toxicity to TNBC
cells, which may have resulted from a significant in-
crease in apoptosis induced by combination therapy
[56]. T Similarly, the combination of adenovirus and
paclitaxel significantly inhibited the migration and inva-
sion of breast cancer cells [107]. In fact, several studies
have reported positive results following administration
of various OVs, such as HSV, MV, and reovirus, with
other chemotherapeutic drugs, including doxorubicin
and camptothecin, to treat TNBC [53, 108, 109].
As radiation may induce killing of OVs, research on

the combination of OVs and radiotherapy is limited.
Nevertheless, the synergistic antitumor effect of OVs

combined with radiotherapy has been confirmed. For in-
stance, Dai et al. observed that oncolytic HSV synergistic-
ally enhanced cytolysis in pancreatic cancer cells with
radiation via apoptosis, to achieve a therapeutic effect
[110]. Moreover, a phase I clinical trial testing the com-
bination of OV, chemotherapy, and radiotherapy reported
the delivery of oncolytic vaccinia virus (GL-ONC1) to be
safe and feasible in patients with locoregionally advanced
head and neck carcinoma [111]. However, the efficacy of
OVs combined with radiotherapy for TNBC remains un-
clear owing to the lack of experimental results. Future re-
search in this direction is required.

Oncolytic virotherapy combined with immune checkpoint
inhibitors
In addition to chemotherapy and radiotherapy, immune
therapy as a new method of cancer treatment has been
proposed in recent years. Immune checkpoint (IC) in-
hibitors (ICIs) showed good therapeutic effects in a var-
iety of cancers [112–115]. One of the reasons for
proliferation and metastasis of tumor cells is their ability
to escape immune system surveillance, and IC is one of
the mechanisms by which they escape immune surveil-
lance [116]. ICs are paired receptor-ligand molecules
with interactions that suppress immune responses [117].
The IC receptors programmed death receptor-1 (PD-1)
and cytotoxic T lymphocyte antigen 4 are located on the
surface of activated T cells and regulatory T cells, re-
spectively [118]]. Binding of receptor and ligand limits T
cell activation. Notably, tumor cells always overexpress
IC ligands. Hence, tumor cells are not damaged by im-
mune system. ICIs were proposed based on this mech-
anism and were used in cancer therapy. Immunologists
James P. Allison and Tasuku Honjo were awarded the
2018 Nobel Prize in Physiology or Medicine for estab-
lishing and proposing negative immunomodulatory ther-
apies for cancer treatment. ICIs block the binding of IC
receptors and ligands by binding with them. However, in
several cases, the response rate was not ideal. This may
be explained by the concept of ‘hot’ and ‘cold’ tumors
mentioned previously. It is generally accepted that the
effect of ICIs is related to tumor microenvironment, and
ICIs can remove the inhibitory effect of tumor cells on
T cells to restart the immune response. However, ‘cold’
tumors, which lack immune cells and immune-
associated factors in the tumor microenvironment, are
free from attack by the immune system. In contrast, ‘hot’
tumor microenvironment can promote the efficacy of
ICIs [119, 120]. Thus, the transformation of ‘cold’ tu-
mors into ‘hot’ tumors is an obstacle that needs to be
overcome in ICI treatment. As mentioned previously,
OVs have the ability to turn ‘cold’ tumor microenviron-
ment into ‘hot’ by releasing TAAs and expressing proin-
flammatory and immuno-stimulatory cytokines after
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cancer cell lysis [121]. Additionally, OV infection can
promote the secretion of type-1 IFNs that in turn pro-
mote PD-L1 expression [122]. Therefore, combined ap-
plication of OVs with ICIs has been the focus of recent
researches. ICIs have always been a hot spot for the
treatment of TNBC, and many clinical studies have been
performed in this research area [123–126]. Combination
therapy with OVs and ICIs provides an effective method
to treat TNBC. A study combined CF33-hNIS-ΔF14.5, a
chimeric poxvirus, with anti-PD-L1, to test the efficacy
of combination therapy. A comparison of the increase in
tumor volume and survival of the mice indicated that
compared with either anti-PD-L1 or CF33-hNIS-ΔF14.5
treatment alone, the antitumor effect of the combined
application was significantly better. Moreover, in tumors
treated with CF33-hNIS-ΔF14.5 alone or in combination
with anti-PD-L1, generous infiltration of CD8+ T cells
was induced. However, anti-PD-L1 treatment alone
could not lead to the same result. In the sane experi-
ment, researchers found that the infection of CF33-
hNIS-ΔF14.5 upregulated the expression of PD-L1 in
human (MDA-MB-468 and Hs578T) and murine (4 T1
and E0771) TNBC cell lines [127]. This may be a pos-
sible mechanism via which OVs and ICIs bring about
synergistic antitumor effect. As mentioned above, Mar-
aba virus in combination with ICIs could inhibit the
growth of TNBC more effectively compared with either
treatment alone [85]. Another study reported that the
combination of ICIs and alkylating agent temozolomide
(TMZ) induced autophagy to increase oncolytic adeno-
virus replication and oncolysis in TNBC cells in vitro
[128].

Oncolytic virotherapy combined with chimeric antigen
receptor T cell (CAR-T) immunotherapy
In recent years, both OVs and chimeric antigen receptor
T cell (CAR-T) therapy have received extensive atten-
tion. CAR-T cells are genetically engineered to express
specific receptors that recognize specific surface antigens
expressed on cell surfaces [129]. As such, CAR-T has
been proposed as a useful treatment of tumors. How-
ever, although CAR-T therapy has shown promising re-
sults in hematologic malignancies, limited efficacy has
been noted in solid tumors. Therefore, oncolytic vir-
otherapy in combination with CAR-T therapy was pro-
posed. OVs can be armed with specific target genes to
promote the expression of chemokines or cytokines and
reverse immunosuppression to promote the migration
and survival of CAR-T cells in the TME. For instance,
an oncolytic adenovirus armed with the chemokine
RANTES and cytokine IL-15 were shown to enhance the
survival of CAR-T cells in TME [130]. Similar results
were reported in a study that utilized OVs armed with
IL-2 and TNF-α [131].

Additionally, by modifying T cells with chimeric anti-
gen receptors that recognize antigens on the surface of
cancer cells, CAR-T cells can be designed to specifically
target cancer cells [132]. However, some tumors, such as
TNBC, lack suitable antigens for specific recognition by
CAR-T cells [133], thus, combination with OVs can cir-
cumvent this issue. Specifically, OVs can perform tar-
geted delivery of specific genes to tumors, thus, enabling
tumor cells to express specific antigens that facilitate
CAR-T recognition. Anthony K. Park et.al utilized an
oncolytic chimeric orthopoxvirus carrying a CD19t-
encoding gene to infect solid tumor cells including those
of pancreatic cancer, prostate cancer, and breast cancer.
They demonstrated that OVs can effectively deliver the
CD19-CAR target to solid tumors and upregulate the ex-
pression of CD19t on the surface of these cells. More-
over, OVs promote the CAR-T cells infiltrating tumors
to enhance their antitumor effect [134]. Thus, utilizing
combined oncolytic virotherapy and CAR-T therapy
may represent a major direction for future research on
the treatment of solid tumors, specifically in the context
of TNBC.

Impediments in clinical application of OVs
Although modification of OVs, in the studies described
here, greatly reduced their toxicity compared with that
of wild type viruses, it remains necessary to assess the
toxicity of these viruses. An important reason for the
use of OVs in cancer treatment is their preference for
infecting tumor cells. However, this does not mean that
OVs pose zero threat to normal cells. Considering that
cancer patients generally receive chemotherapy, radio-
therapy, and other treatments that cause immune im-
pairment, there is an inherent risk of serious adverse
events developing from OV therapy. Another challenge
is the directed delivery of OVs to the tumor site, which
is the most critical step in its clinical application. Intra-
venous infusion is undoubtedly the most convenient and
feasible method for drug administration, however, this
mode is unsuitable for OV delivery, as they elicit their
antitumor effects only after entering tumor cells. Al-
though selective toward tumor cells, OVs are recognized
as xenogeneic, thereby inducing immune responses lead-
ing to interactions with antigen-presenting cells and
resulting in the release of proinflammatory factors [135].
Hence, activation of monocytes and macrophages that
phagocytose the virus can prevent it from reaching the
tumor site. This antiviral immunity will likely cause OVs
to be cleared from the system before reaching the tumor
cells. Therefore, improving the efficiency of intravenous
infusion should be the primary focus for future research.
Meanwhile, although intratumorally injected OVs may
be a more suitable route for administration to tumor
cells, it is difficult to operate in clinical practice. In
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addition, intravenous infusion of OVs may be more ef-
fective than intratumoral injection [85], because in
addition to initiating antiviral immunity, OVs also acti-
vate antitumor immunity. Hence, antiviral immunity
may stimulate antitumor immunity. Hence, several strat-
egies have been employed to achieve a balance between
these two responses.
Coating viral particles with polyethylene glycol, which

may prevent their interaction with blood cells, thus, in-
creasing their circulation time in blood stream, was
found to reduce transduction of hepatocytes and hepato-
toxicity, thereby increasing the anticancer efficacy after
systemic (intravenous) administration of OV [136].
Other studies have investigated the use of cell carriers to
transport OV as this method may avoid OV elimination
during their migration to tumor cells following intraven-
ous injection. In fact, T lymphocytes [137], mesenchymal
stem cells [138], and blood outgrowth ECs [139] have
been shown to enhance the oncolytic virotherapy as cell
carriers. However, these cells do not enhance the effect
of OVs after entering the tumor cells. Therefore, further
enhancement of the long-term antitumor effect of OVs,
as well as their transmission between tumor cells, re-
mains to be achieved.

Perspectives
Future research must focus on the development of an ef-
fective method to reduce the elimination of intraven-
ously infused OVs, thus ensuring that they reach the
tumors and replicate. This is essential as the antiviral
immunity activated by OVs also suppress the efficacy of
oncolytic virotherapy. Furthermore, the timing of OV
application has not been thoroughly investigated. Cur-
rently, considering that there are no alternatives to sur-
gical interventions, it is necessary to determine if the
oncolysis treatment is most efficacious when performed
before or after surgery. This is especially important since
the replication of OVs requires tumor cells. Thus, OVs
may lack a sufficient amount of replication sites post re-
section of solid tumors, resulting in decreased thera-
peutic efficiency.
Based on previous clinical data, combination therapy

should be the first choice for treatment strategies.
Hence, additional data on combination therapies specific
for TNBC are needed. Moreover, further clarification of
the underlying mechanisms associated with the synergis-
tic effect of combinatorial therapy comprising OVs and
radiotherapy or chemotherapy, is required. Moreover,
combined treatment need not be limited to two
methods. Interestingly, a clinical trial combined the OV,
pelareorep, PD-1 inhibitor pembrolizumab, and a che-
motherapeutic agent did not induce significant toxicity
while showing encouraging efficacy for the treatment of
patients with advanced pancreatic adenocarcinoma in

this phase Ib study [140]. It is, therefore, necessary to
evaluate the efficacy of additional combinations.
Although OVs have shown promising effects in TNBC

treatment, based on in vitro and in vivo models, clinical
and experimental evidence remains sparce. Nevertheless,
clinical trials performed for OVs in other tumors por-
tend the feasibility of their application for TNBC [141].
Hence, in addition to preclinical studies, progress in
clinical studies is also essential. Furthermore, in addition
to being used in nasopharyngeal carcinoma and melan-
oma, oncolytic virotherapy is currently used less in clin-
ical settings for other solid tumors, as it remains in the
clinical trial (Table 2). As such, there is a lack of clear
treatment standards and guidelines for the oncolytic vir-
otherapy of different solid tumors. Finally, it also re-
mains unclear whether treatment options for TNBC and
other solid tumors are similar, thus warranting further
investigation.

Conclusions
OVs can be considered potential candidates for the
treatment of TNBC owing to their abilities to replicate
in tumor cells, causing their direct lysis, destroy tumor
vasculature, activate innate and adaptive immune re-
sponses to generate an antitumor effect, transform ‘cold’
tumors to ‘hot’, act as a vector carrying target genes and
expressing antitumor related factors in tumor cells.
These characteristics make OVs advantageous, com-
pared with other treatment modalities, including radio-
therapy, chemotherapy, and endocrine therapy.
Moreover, their preference for tumor cells reduces the
adverse events elicited by OVs to normal cells, while also
reducing the development of drug resistance. Moreover,
as the viruses actively replicate following entry into host
cells, they effectively activate the immune system, thus,
maintaining a long-term antitumor effect. Hence, to ad-
dress the urgent requirement for advanced and novel
treatment strategies for TNBC, the feasibility of OVs
must continue to be investigated as a means of opening
new avenues of research and providing a novel platform
for clinical treatment.
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