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Abstract

Background: Contemporary to the rapidly evolving landscape of cancer immunotherapy is the equally changing
understanding of immune tumor microenvironments (TMEs) which is crucial to the success of these therapies. Their
reliance on a robust host immune response necessitates clinical grade measurements of immune TMEs at diagnosis.
In this study, we describe a stable tumor immunogenic profile describing immune TMEs in multiple tumor types
with ability to predict clinical benefit from immune checkpoint inhibitors (ICls).

Methods: A tumor immunogenic signature (TIGS) was derived from targeted RNA-sequencing (RNA-seq) and gene
expression analysis of 1323 clinical solid tumor cases spanning 35 histologies using unsupervised analysis. TIGS
correlation with ICI response and survival was assessed in a retrospective cohort of NSCLC, melanoma and RCC
tumor blocks, alone and combined with TMB, PD-L1 IHC and cell proliferation biomarkers.

Results: Unsupervised clustering of RNA-seq profiles uncovered a 161 gene signature where T cell and B cell
activation, IFNg, chemokine, cytokine and interleukin pathways are over-represented. Mean expression of these
genes produced three distinct TIGS score categories: strong (n = 384/1323; 29.02%), moderate (n =354/1323;
26.76%), and weak (n = 585/1323; 44.22%). Strong TIGS tumors presented an improved ICl response rate of 37% (30/
81); with highest response rate advantage occurring in NSCLC (ORR = 36.6%; 16/44; p =0.051). Similarly, overall
survival for strong TIGS tumors trended upward (median =25 months; p =0.19). Integrating the TIGS score
categories with neoplastic influence quantified via cell proliferation showed highly proliferative and strong TIGS
tumors correlate with significantly higher ICI ORR than poorly proliferative and weak TIGS tumors [14.28%; p =
0.0006]. Importantly, we noted that strong TIGS and highly [median = not achieved; p = 0.025] or moderately
[median = 16.2 months; p =0.025] proliferative tumors had significantly better survival compared to weak TIGS,
highly proliferative tumors [median = 7.03 months]. Importantly, TIGS discriminates subpopulations of potential ICl
responders that were considered negative for response by TMB and PD-L1.
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implementation into clinical practice.

Borderline, Non-inflamed

Conclusions: TIGS is a comprehensive and informative measurement of immune TME that effectively characterizes
host immune response to ICls in multiple tumors. The results indicate that when combined with PD-L1, TMB and
cell proliferation, TIGS provides greater context of both immune and neoplastic influences on the TME for
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Background

Since the approval of the first immune checkpoint in-
hibitor (ICI) for melanoma in 2011, the landscape of
cancer therapies has changed dramatically, combining
biological response with genomics knowledge to change
treatment paradigms and improve clinical outcomes [1].
Immunotherapies have shown to significantly improve
clinical endpoints such as progression free survival (PFS)
and overall survival (OS) in multiple cancer subtypes
compared to chemotherapy alone [2]. Despite the tre-
mendous efficacy of ICIs in some patients, other patients
fail to respond to therapy, while others can develop se-
vere autoimmune toxicity [1, 3]. To maximize treatment
benefit and develop personalized therapeutic strategies,
genomic and immune biomarkers, such as PD-L1 and
tumor mutational burden (TMB), are utilized to guide
therapeutic decisions based on tumor subtype [2, 3]. Al-
though biomarker analyses regularly guide treatment de-
cisions in standard of care clinical settings, single
biomarkers alone are insufficient to adequately predict
therapeutic response in some patients [2]. As a result,
there is increased demand for the development of pre-
dictive assays which consider the multitude of networks
and cellular phenotypes that complicate the immune
tumor microenvironment (TME).

Proximity between tumor cells and immune cells is es-
sential, though not entirely sufficient for immunotherapy
efficacy, as tumors can avoid destruction by immune es-
cape mechanisms such as downregulation of antigens,
recruitment of immune suppressors, and upregulation of
receptors that downregulate tumor-infiltrating lympho-
cytes (TILs) [4, 5]. It is well known that the success of
ICIs depends upon the mobilization of the immune sys-
tem within the TME where cancer cells interact with
stromal cells [5, 6]. Therefore, the development of a bio-
marker detection modality inclusive of both cell prolifer-
ation and inflammation biomarkers is necessary to
improve patient management.

A recent study by Ayers et al. analyzed RNA-seq gene
expression profile (GEP) consisting of IFN-gamma
genes, chemokine expression, cytotoxic activity and im-
mune resistance genes along with PD-L1 and TMB.
While the T cell-inflamed GEP signatures correlated
with clinical benefit, the addition of all the gene profiles
in the GEP was not always of sufficient sensitivity for the

clinical benefit [7, 8]. Here we describe a multivariate
approach to investigate combinations of immune and
neoplastic influences responsible for response to ICI be-
yond a comprehensive immunogenic signature.

Methods

Patients and clinical data

Fifteen collaborating institutions obtained approval by
their respective institutional review boards (IRBs) to sub-
mit existing de-identified specimens and associated clin-
ical data for use in this study. This study involves two
separate cohorts, namely, a discovery cohort of clinically
tested solid tumors used for development of the im-
munogenic signature and a retrospective cohort for
which response to ICI therapy and overall survival was
available. For the discovery cohort, a total of 1323 pa-
tients were included [Supplementary Tables S1, S10],
based on the following criteria, (1) Availability of high-
quality gene expression data from samples clinically
tested by a CLIA approved targeted RNA-seq assay [9];
(2) Samples that pass clinically approved tissue, nucleic
acid and sequencing QC metrics; (3) Samples that have
less than 50% necrosis and at least 5% tumor purity; and
(4) Availability of other primary immune biomarkers
such as PD-L1 IHC (TPS %) and TMB.

The retrospective cohort of 242 tumors were from patients
treated with ICIs including non-small cell lung cancer
(NSCLC) (n =110) [10], melanoma (7 =78) [11], and renal
cell carcinoma (RCC) cases (n = 54) [Table 1, Supplementary
Table S11] [12]. Inclusion criteria comprised of treatment by
an FDA approved ICI agent as of November 2017, had fol-
low up and survival from first ICI dose and evaluable re-
sponse based on RECIST vl1.1. RECIST responses of
complete response (CR) and partial response (PR) were clas-
sified as responders, whereas, stable disease (SD) or progres-
sive disease (PD) were classified as non-responders. Duration
of response was not available for all patients and not in-
cluded for final analysis.

Quality assessment of clinical FFPE tissue specimens

Tissue sections from FFPE blocks were cut at 5 pm onto
positively charged slides. One cut section from each tis-
sue sample was stained with H&E and assessed by a
board-certified anatomical pathologist for adequacy of
tumor representation, the quality of tissue preservation,
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Table 1 Clinical characteristics of the retrospective cohort
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NSCLC Patients Melanoma

RCC

Patients (n=110) All Case (n =78)

Pre-ipi approval (n =4)

Post-ipi approval (n =74) ICl Treated (n =54)

Age at initial diagnosis (years)

<30 1 (0.9%)
30-39 7 (9.0%) 1 (25.0%) 6 (8.1%) 1 (1.9%)
40-49 3 (2.7%) 14 (17.9%) 1 (25.0%) 13 (17.6%) 6 (11.1%)
50-59 26 (23.6%) 13 (16.7%) 1 (25.0%) 12 (16.2%) 21 (38.9%)
60-69 41 (37.3%) 19 (24.4%) 1 (25.0%) 18 (24.3%) 16 (29.6%)
70-79 30 (27.3%) 18 (23.1%) 18 (24.3%) 10 (18.5%)
>80 9 (8.2%) 7 (9.0%) 7 (9.5%)
Mean 65.4 60.6 48 61.3 59.5
Year of diagnosis (Range) 2007-2017 1990-2016 2004-2009 1990-2016 1981-2016
Sex
Female 58 (52.7%) 26 (33.3%) 2 (50.0%) 24 (32.4%) 14 (25.9%)
Male 52 (47.3%) 52 (66.7%) 2 (50.0%) 50 (67.6%) 40 (74.1%)
Race
White 91 (82.7%) 78 (100.0%) 4 (100.0%) 74 (100.0%) 41 (75.9%)
Other 14 (12.7%) 7 (13.0%)
Unknown 5 (4.5%) 6 (11.1%)

Vital status at last follow up
Alive
Dead

55.00 (50.0%)
55.00 (50.0%)

46.00 (59.0%)
32.00 (41.0%)
Checkpoint inhibitor

2.00 (50.0%)
2.00 (50.0%)

44.00 (59.5%)
30.00 (40.5%)

31.00 (57.4%)
23.00 (42.6%)

atezolizumab 2 (1.8%)

ipilimumab 35 (44.9%) 3 (75.0%) 32 (43.2%)

ipilimumab + nivolumab 2 (1.8%) 10 (12.8%) 1 (25.0%) 9 (12.2%)

nivolumab 71 (64.5%) 2 (2.6%) 2 (2.7%) 54 (100.0%)

pembrolizumab 35 (31.8%) 31 (39.7%)

Months of follow up

<1 48 (43.6%)

3 6 (5.5%) 1(1.3%)

6 17 (15.5%) 12 (15.4%)
10 22 (20.0%) 15 (19.2%)
>10 17 (15.5%) 50 (64.1%)

4 (100.0%)
Median 8 125 63

31 (41.9%)

21 (38.9%)
1 (1.9%)
5 (9.3%)

1 (1.4%)
12 (16.2%)
15 (20.3%) 14 (25.9%)
46 (62.2%) 13 (24.1%)
12 10

evidence of necrosis, or issues with fixation or handling
were present. Specimens containing < 5% tumor tissue
and > 50% necrosis were excluded from analysis. In gen-
eral, tissue from 3 to 5 unstained slide sections, with or
without tumor macrodissection, was required to achieve
the assay requirements for RNA (10 ng) and DNA (20
ng) input.

Immunohistochemical studies
The expression of PD-L1 on the surface of cancer cells
was assessed in all cases regardless of tumor type by

means of the Dako PD-L1 IHC 22C3 pharmDx (Agilent,
Santa Clara, CA). PD-L1 levels were scored by a board-
certified anatomic pathologist as per published guide-
lines [13], with a tumor proportion score (TPS)>1%
considered as positive result (PD-L1+). PD-L1 TPS < 1%
was considered negative (PD-L1-).

Tissue sections were also examined for CD8 T-cell in-
filtration using anti-CD8 antibodies (C8/144B; Agilent,
Santa Clara, CA) and classified into non-infiltrating, in-
filtrating, or excluded CDS8 infiltration groups. Cases
where a sparse number of CD8+ T-cells infiltrated
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clusters of neoplastic cells with less than 5% of the
tumor showing an infiltrating pattern were designated
non-infiltrating, while those showing frequent infiltra-
tion of neoplastic cell clusters in an overlapping fashion,
at least focally, in more than 5% of the tumor were des-
ignated infiltrating. Cases where more than 95% of
CD8+ T-cells were restricted to the tumor periphery or
interstitial stromal areas and did not actively invade
clusters of neoplastic cells were designated as excluded.

Nucleic acid isolation, gene expression and TMB

DNA and RNA were co-extracted from each sample and
processed for gene expression by RNA-seq and TMB by
DNA-seq, as previously described [9]. Nucleic acids were
quantitated by Qubit fluorometer (Thermo Fisher Scien-
tific) using ribogreen staining for RNA and picogreen
staining for DNA. Gene expression were evaluated by
RNA sequencing of 395 transcripts on samples that met
validated quality control (QC) thresholds [9]. TMB was
measured by DNA sequencing of the full coding region
of 409 cancer related genes as non-synonymous muta-
tions per megabase (Mut/Mb) of sequenced DNA on
samples with > 30% tumor nuclei. RNA and DNA librar-
ies were sequenced to appropriate depth on the Ion Tor-
rent S5XL sequencer (Thermo Fisher Scientific).

Data analyses

Using the Torrent Suite plugin immuneResponseRNA
(Thermo Fisher Scientific), RNA-seq absolute reads were gen-
erated for each transcript [9]. In each case, absolute read
counts from the NTC were used as the library preparation
background which was subtracted from the absolute read
counts of the same transcript in all other samples of the same
batch. To facilitate the comparability of NGS measurements
across runs for evaluation and interpretation, background-
subtracted read counts were normalized into normalized
reads per million (nRPM) values by comparing each house-
keeping (HK) gene background-subtracted read against an
already-determined HK RPM profile. For each gene, nRPM
expression values are converted to percentile rank of 0-100
when compared to a reference population of 735 solid tumors
of 35 histologies [9] [Supplementary Fig. S1].

Initial visualization of the overall gene expression land-
scape of the discovery cohort was performed on the gene
expression rank values using unsupervised hierarchical
clustering with Pearson’s correlation (R) used as a meas-
ure of distance (phase 1). These results were then re-
fined using k-means (k =3) clustering to generate three
stable clusters of patients (phase 2). Panther pathway en-
richment analysis of these gene clusters distinguished
them as cancer testis antigen genes, genes associated
with the inflammation response, and other immune and
neoplasm genes [Supplementary Tables S2, S3]. The
161-gene cluster associated with the inflammation
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response was termed the tumor immunogenic signature
(TIGS), as the expression of these genes closely followed
the degree of inflammation presented by each of the
three patient clusters (phase 3) [Supplementary Fig. S2].

For each patient, a TIGS was calculated as mean ex-
pression rank of these 161 transcripts (phase 4). To de-
rive clinically meaningful cutoffs for TIGS, we calculated
overall average and standard deviation of TIGS across
the three patients cluster of inflamed, borderline, and
non-inflamed tumors [Supplementary Table S5]. Cutoff
for strong immunogenicity (IS = 62) was derived as [Me-
dian TIGS]gordertine + 2 x [Std. Dev. TIGS]gorderlines and
similarly, for weak immunogenicity (IS = 43) was derived
as, [Median TIGS]|noninflamed + 2 X [Std. Dev. TIGS]nonin-
flamed» Where TIGS = immunogenicity score. Any TIGS
score between 62 and 43 was classified as moderate im-
munogenicity. For retrospective cohort with clinical out-
come and survival data, we performed survival analyses
using a log-rank test on 5-year Kaplan-Meier survival
curves. We used a Cox proportional hazards model to
calculate hazard ratios (HRs) and 95% confidence inter-
vals [CIs] and p values for testing the effect of co-
variates (tumor type, age, gender, PD-L1 IHC status, and
TMB status) on overall survival. Comparison of ICI re-
sponse rates was performed using Chi-square test with
Yate’s continuity correction to test for significant differ-
ences in ICI response for various biomarker groups.
[Supplementary Fig. S2].

Results

Tumor immunogenic signature (TIGS)

Unsupervised hierarchical clustering of all genes sequenced
in the discovery cohort revealed three clusters of coexpres-
sing genes. Refining these results using k-means (k = 3) clus-
tering generated three stable clusters of genes and three
clusters of patients (non-inflamed, borderline, and inflamed)
[Fig. la]. Pathway analysis of these gene clusters distin-
guished them as cancer testis antigen genes, genes associated
with the inflammation response, and other immune and neo-
plasm genes [Supplementary Tables S2, S3]. The 161 genes
associated with the inflammation response were termed the
TIGS, as the expression of these genes closely followed the
degree of inflammation presented by each of the three pa-
tient clusters [Fig. 1b]. The distributions of the immunogenic
scores of the all samples in each of sample cluster were used
to establish boundaries between the strong, moderate, and
weak immunogenic score groups.

To assess agreement of the algorithmic TIGS with ob-
served immune cell infiltration, we analyzed the distribu-
tion of immunogenic score within three major types of
CD8 infiltration patterns estimated by IHC (infiltrating/
strongly infiltrating, non-infiltrating, and excluded) [Fig.
1c-e]. As expected, the median immunogenic score of
infiltrating/strongly infiltrating samples (n =493) was
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Fig. 1 Discovery cohort gene expression clusters (A), and association with TIGS clusters (B), CD8 IHC patterns of T-cell infiltration (C-E), and
TIGSdistribution within CD8 cohort (F). A. Unsupervised clustering of 1323 clinical RNA-seq profiles yield three immunogenic clusters, namely,

CD8 Infiltration Status

inflamed (n =439/1323; 33.18%), borderline (n = 467/1323; 35.30%) and non-inflamed (n =417/1323; 31.52%). The tumor immunogenic signature
(TIGS) cluster of genes contains 161-genes that are over-represented by T & B cell activation pathways along with IFNg, chemokine, cytokine and
interleukin pathways. Mean expression of the 161 genes constituting the TIGS cluster produces the TIGS score. B. Distributions of the TIGS of the
samples in each of the three sample clusters. C-E. Representative CD8 immunohistochemistry images of T cell infiltration patterns of Infiltrating

(C), Non-infiltrating (D), and excluded (E). F. The distribution of immunogenic scores for tumors in the discovery cohort with strongly infiltrating,

non-infiltrating, and excluded CD8 T cell infiltration patterns

54.85, whereas the median immunogenic score of nonin-
filtrating samples (1 =403) was significantly lower (me-
dian =34.84; p =2.22E-16). Interestingly, excluded
phenotype (n =26) of immune infiltration had a median
immunogenic score similar to the strongly/moderately
infiltrating phenotype (median = 50.83; p = 0.31), but sig-
nificantly higher than the noninfiltrating pattern (p =
0.00032) [Fig. 1f].

TIGS and clinical outcomes

To assess clinical utility, TIGS was used to classify a pre-
viously published retrospective cohort of 242 samples
with ICI outcomes (melanoma, NSCLC, and RCC) into
strongly, moderately, and weakly immunogenic groups
[11, 12, 14] [Fig. 2a]. Strongly immunogenic tumors
showed higher objective response rate (ORR) compared
to weakly immunogenic tumors (37% vs 23%; p =0.06)
to checkpoint inhibition in the retrospective cohort.

Tumor type-specific analysis showed similar results in
melanoma (53% vs. 33%; p = 0.27), NSCLC (36% vs. 14%;
p =0.05), and RCC (25% vs 16%; p =0.8) [Fig. 2b] [Sup-
plementary Table S4].

Next, we investigated the impact of immunogenic
score on overall survival in the retrospective cohort.
Even though there was no significant difference in over-
all survival of strongly inflamed compared to weakly in-
flamed tumors (p =0.19), we observed a clear separation
of median survival between the two groups (25.6 months
vs. 13.8 months) [Fig. 2c]. Multivariate analysis using
Cox proportional hazard model revealed that weakly in-
flamed TIGS category had a significantly high hazard ra-
tio (HR=1.83 [1.09-3.06]; p =0.022) compared to
strongly inflamed category [Supplementary Fig. S3]. We
further investigated the source of this survival difference
by performing tumor type-specific survival analysis,
which showed that most of the survival difference can
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Fig. 2 TIGS and ORR to ICl across all tumors in retrospective cohort (A) and within tumors (B). TIGS and survival across all tumors (C), melanoma (D), NSCLC (E),
and RCC (F). A. Objective response rates (ORR) observed in the retrospective cohort for each TIGS group. B. ORR observed in each TIGS group for three disease
types within the retrospective cohort. C-F. Survival curves for each TIGS group in the retrospective cohort (C), melanoma (D), NSCLC (E), RCC (F)

be attributed to NSCLC cases (p =0.0012; 15.4 months
vs. 7.63 months) [Fig. 2d-f, Supplementary Fig. S4-S6;
Supplementary Table S5]. This NSCLC survival effect
was supported by the multivariate Cox proportional haz-
ard analysis where melanoma (HR=0.39 [0.24-0.66];
p <0.001) and RCC (HR =0.44 [0.24-0.81]; p =0.008)
had significantly less effect on overall survival difference
compared to NSCLC [Supplementary Fig. S3]. Age, gen-
der and TMB status had no significant association to

overall survival (p > 0.05) [Supplementary Fig. S3]. Inter-
estingly, multivariate analysis of PD-L1 IHC status
showed that negative cases showed trend towards worse
survival (HR =1.51[0.93-2.45]; p =0.095) [Supplemen-
tary Fig. S3].

TIGS and traditional biomarkers
To further investigate the utility of TIGS, we studied the
predictive capacity of TIGS in conjunction with
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traditional biomarkers for response to ICI therapy such
as PD-L1 expression and TMB high. The combination of
TIGS and PD-L1 shows an additive effect on objective
response rate to ICI therapy in the retrospective cohort
[Fig. 3a]. A similar effect was observed for TMB [Fig.
3b]. In general, PD-L1+, strongly immunogenic patients
had the highest clinical response rate for all three cancer
types (excluding single-sample groups), and PD-L1-,
weakly immunogenic patients had the lowest response
rate (or in the case of melanoma, the second-lowest).
Interestingly, PD-L1 and TMB in combination did not
show a similar effect [Supplementary Fig. S7]. In melan-
oma, TMB high, strongly inflamed patients had an ORR
of 72.73%, while TMB low, strongly inflamed patients
had a response rate of 16.67%.

Finally, combining TIGS with PD-L1 and TMB status
for NSCLC, melanoma and RCC, the prediction of ob-
jective response becomes even more robust [Supplemen-
tary Fig. S7]. A significantly higher [p = 0.0001] objective
response rate of 69.23% was observed for PD-L1 positive,
TMB high, strongly inflamed tumors, compared to an
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objective response rate of only 10.53% for PD-L1 nega-
tive, non-TMB high, weakly inflamed tumors.

TIGS and cell proliferation
In order to gain more comprehensive insight into the
TME and its effect on immunotherapy response, an un-
derstanding of both immune and neoplastic influences is
required. To achieve this, we combined TIGS with a pre-
viously published emerging biomarker of cell prolifera-
tion [12, 14]. Combining TIGS subgroups with cell
proliferation classes of highly, moderately, and poorly
proliferative tumors significantly improves objective re-
sponse separation, where highly proliferative, inflamed
tumors [55%] have significantly higher objective re-
sponse to ICI therapy than poorly proliferative, non-
inflamed tumors [14.28%; p =0.0006] [Fig. 4a]. Tumor
type-specific analysis were not performed due to small
sample sizes within each group.

Further evidence demonstrated significant survival dif-
ferences between different combinations of TIGS and
cell proliferation [p =0.012] [Fig. 4b]. Importantly, we
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in the retrospective cohort when TIGS is used in conjunction with cell proliferation score classification. B. Kaplan Meier survival curves of
combined TIGS and cell proliferation status for 242 ICI treated retrospective cohort
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noted that strongly inflamed and highly [median = not
achieved; p =0.025] or moderately [median=16.2
months; p = 0.025] proliferative tumors had significantly
better survival compared to weakly inflamed, highly pro-
liferative tumors [median = 7.03 months] [Tables S6, S7].
Even though this difference was not statistically signifi-
cant for individual tumor types, median OS was not
reached for strongly inflamed and highly proliferative tu-
mors for NSCLC and melanoma [Supplementary Fig. S9,
S10, S11]. Multivariate Cox proportional hazard analysis
showed no additional effect of age, gender, PD-L1 THC
status, and TMB status on the overall survival [Supple-
mentary Fig. S8]. This data suggests and we hypothesize

that both T cell proliferation and tumor cell proliferation
contribute to the signal in highly inflamed and highly
proliferative tumors, whereas only tumor cell prolifera-
tion appears to contribute to the measurement of highly
proliferative, weakly inflamed tumors [Fig. 5]. Therefore,
combining biomarkers of both neoplastic and immune
influences as described could facilitate a more compre-
hensive understanding of the tumor immune micro-
environment and likelihood of response to ICls.

Discussion
Even though PD-L1 expression and TMB are among the
most utilized biomarkers for ICI treatment decision
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proliferation and tumor immunogenicity affect treatment response

Relationship Between Cell Proliferation and TIGS Affects Treatment Response
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Fig. 5 Integrative hypothesis for utility of TIGS and cell proliferation for treatment selection. Hypothesized relationship mechanism by which cell

making [13, 15], the complexity of the antitumor host
immune response cannot be fully explained by a single
biomarker of immune or neoplastic mechanism. TMB is
known to be correlated to response to ICI in multiple
disease types however when evaluated for combination
therapy there is no reported difference in median TMB
for responders versus non-responders [16]. Since TMB
does not directly represent the neoantigen load com-
prised of immunogenic neopeptides, it may only lead to
limited understanding of the TME being assessed. Simi-
larly, PD-L1 by IHC was only found to be predictive in
28.9% of cases across 45 FDA drug approvals for ICI
across 15 tumor types [17]. This results in the need to
investigate multiplex biomarkers, including tumor im-
munogenic signature, that are more comprehensive in
deciphering the state of the tumor immune microenvi-
ronments primed for ICI response.

To enable a more comprehensive treatment decision,
a robust measurement of the host immune response is
required [8]. In this study we show the discovery of
comprehensive gene expression-based tumor immuno-
genic signature (TIGS) that complements both trad-
itional and emerging biomarkers of ICI response in
solid tumors. TIGS was derived from a pan-cancer co-
hort of real-world clinical FFPE tumors to broadly de-
scribe immunogenic state of the TME as strongly,
moderately and weakly inflamed. The TIGS score was

highly correlated to the TIL infiltration pattern ob-
served in the tumor samples and differentiated patients
with higher response and improved survival in NSCLC.
TIGS score also complemented traditional biomarkers
where, as expected PD-L1* tumors that were strongly
inflamed had a very high response (45%; 18/40). Inter-
estingly, TIGS was able to identify a subpopulation of
PD-L1 negative tumors with a strongly inflamed pheno-
type with response to ICI up to 29% (12/41). Similarly,
TIGS complements TMB where TMB high tumors that
are strongly inflamed have ORR of 48% (13/17), but
was also able to identify non-TMB high, strongly in-
flamed cases that have ORR of 31% (17/54) to ICI. Spe-
cifically focusing on NSCLC which is the largest
population of the discovery cohort, we observe the clin-
ical utility of TIGS in this disease type. After conduct-
ing a retrospective analysis of 110 NSCLC samples
using the clinically recommended immune checkpoint
biomarkers of PD-L1 and TMB by targeted next gener-
ation sequencing, we identified a substantial subpopula-
tion of PD-L1-, TMB- patients (24%; n =26) of which
46% presented an inflamed TME as measured by TIGS.
These PD-L1-, TMB-, TIGS inflamed patients had ORR
of 42% whereas none of the PD-L1-, TMB- and moder-
ately or weakly inflamed tumors responded to ICI [Sup-
plementary Table S8]. As such, we believe our TIGS
may serve as a novel method to identify a substantial
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cohort of NSCLC patients who would benefit from ICI
that would not be identified by current clinical
protocols.

Next, we combined our TIGS with cell proliferation
which is an emerging biomarker for resistance to ICI
therapy in NSCLC and RCC [8, 11]. As previously pub-
lished, moderately proliferative tumors demonstrate sig-
nificantly higher response to ICI as compared to poorly
or highly proliferative tumors regardless of immunogen-
icity, except in the case of highly inflamed tumors.
Highly inflamed and highly proliferative tumors had the
highest response rate in the retrospective cohort. This
led us to hypothesize that TIGS represents the host im-
mune response and cell proliferation represents the
overall proliferative potential of the entire TME. In case
of strongly inflamed and highly proliferative tumors, the
cell proliferation signal can be attributed to antigen
stimulated T cell proliferation as well as neoplastic cell
proliferation. This TME is uniquely primed for response
to ICI therapy. However, weakly inflamed tumors may
not contribute to cell proliferation signal via antigen
stimulated T cell proliferation. Therefore, most of the
cell proliferation signal may be attributed to neoplastic
cell proliferation making the TME resistance to ICI ther-
apy due to lack of underlying host immune response.
Combining the TIGS and cell proliferation with trad-
itional biomarkers of PD-L1 and TMB support this mer-
ger. Hence, in the retrospective cohort we were able to
identify PD-L1-, TMB- patients that had very high re-
sponse rate for highly proliferative, strongly inflamed tu-
mors (100%; 2/2) and moderately proliferative, strongly
inflamed tumors (42%; 5/12) [Supplementary Table S9].
As such, we believe our TIGS in conjunction with trad-
itional and emerging biomarkers of ICI response and re-
sistance may provide comprehensive understanding of
the underlying state of immune and neoplastic influ-
ences that contribute to the success of failure of ICI
therapy.

Even though our work is not based on controlled trial
samples, we derived the immunogenic score from a large
cohort of real world clinical FFPE samples spanning
multiple solid tumor types. One of the major limitations
of this work is lack of subgroup sample size to perform
sufficiently powered analysis when multiple biomarkers
are combined. This led to a pooled analysis of the retro-
spective cohort by ICI treatment agent. Additionally, the
small sample size for the RCC and melanoma retro-
spective cohort limits the analysis which could be per-
formed on a subgroup level. Due to a lack of frontline
checkpoint treatment data along with aforementioned
limitations, we believe that further studies are warranted
to investigate additional tumor type- and treatment
type-specific effects of TIGS alone and in conjunction
with other biomarkers in the context of frontline
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checkpoint inhibition therapy. Additionally, this study
could benefit from further investigation into the correl-
ation of immune composition of peripheral blood within
the tumor-immune microenvironment and immunother-
apy response. On the other hand, this study also does
not address the immune and neoplastic influences ob-
served in the non-treated tumors which might bring
additional discrimination of prognostic versus predictive
abilities of combination of TIGS and cell proliferation.
However, we believe this large-scale assessment of a
clinical grade cohort will lead to further hypothesis test-
ing of integration of immune and neoplastic signals in
the tumor immune microenvironment.

Conclusions

In summary, we describe a comprehensive tumor im-
munogenic signature which portrays the underlying host
immune response and also mediates the aggregation of
primary biomarkers of ICI response (PD-L1 and TMB)
along with biomarkers of resistance such as cell prolifera-
tion. TIGS alone as well as in combination with these bio-
markers can identify patient subpopulations that may be
resistance to ICI therapy but more importantly select pa-
tients that may have not been identified for response to
ICI by traditional clinical biomarkers. The gene expression
assay which measures TIGS can be implemented into rou-
tine practice to promote drug development efforts, facili-
tate patient selection for clinical trials and support
treatment decision making as part of routine clinical care.
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