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Abstract

EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have achieved remarkable outcomes in the treatment of patients with
EGFR-mutant non-small-cell lung cancer, but acquired resistance is still the main factor restricting their long-term
use. In addition to the T790 M mutation of EGFR, amplification of the MET (or c-MET) gene has long been
recognized as an important resistance mechanism for first- or second-generation EGFR-TKIs. Recent studies suggest
that a key mechanism of acquired resistance to third-generation EGFR-TKIs (such as osimertinib) may be MET
amplification and/or protein overactivation, especially when they are used as a first-line treatment. Therefore, in
patients resistant to first-generation EGFR-TKIs caused by MET amplification and/or protein overactivation, the
combination of osimertinib with MET or MEK inhibitors may be considered.
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Introduction
Lung cancer is the leading cause of cancer-related death
in humans, accounting for approximately one-third of
cancer-related deaths worldwide. Non-small-cell lung
cancer (NSCLC) is the main type and accounts for more
than 80% of lung cancer cases, with an overall 5-year
survival rate of approximately 18% [1]. In the past
few decades, great efforts have been made to treat
lung cancer worldwide, but the survival rate has not
been significantly improved. The discovery of EGFR
mutations and the advent of EGFR-tyrosine kinase in-
hibitors (EGFR-TKIs) for the treatment of metastatic
NSCLC has dramatically changed the prognosis of se-
lected patients and become an important milestone in
NSCLC targeted therapy.
The proportion of EGFR mutations varies from race to

race and is not the same in Western and Asian NSCLC
populations, in which it is approximately 15 and 40%, re-
spectively [2]. EGFR mutations mainly occur in four exons
(exons 18–21), and the most common mutations are exon
19 deletions (approximately 60%) and exon 21 L8585R
point mutations (approximately 30%), accounting for

approximately 90% of all EGFR mutations [2]. EGFR mu-
tations primarily increase the affinity between EGFR-TKIs
and mutant receptors and are therefore sensitive to
EGFR-TKIs. The first generation of EGFR-TKIs, such as
gefitinib and erlotinib, blocks the further transmission of
signals into cells by competitively binding to ATP-binding
EGFR tyrosinase catalytic domain binding sites on the cell
surface, thus inhibiting tumor cell growth and inducing
apoptosis. Treatment of NSCLC harboring EGFR muta-
tions with first generation of EGFR-TKIs is widely used in
the clinic has achieved great success [3]. Unfortunately,
patients eventually develop acquired resistance leading to
disease progression, which is also why the long-term ap-
plication of these drugs is limited [2, 4, 5].
Approximately 60% of acquired resistance to the first

generation of EGFR-TKIs results from EGFR exon 20
T790M mutations. In addition, several studies have
found that amplification of the MET (also referred to as
c-MET) gene is also an acquired resistance mechanism
that leads to the failure of EGFR-TKI treatment [6]. The
data show that MET gene amplification is present in ap-
proximately 5–22% of patients with NSCLC who develop
acquired resistance to the first generation of EGFR-TKIs
[2, 4, 5]. There are also studies illustrate that Met ex-
pression and activation (before EGFR TKI treatment)
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cause poor response to subsequent EGFR inhibitor treat-
ment, despite the presence of EGFR TKI sensitizing mu-
tations, this part of the patient is rare [6, 7]. MET
bypasses the suppressed EGFR phosphorylation kinase
pathway and is amplified through the ERBB3-P13K/AKT
and MAPK-ERK1/2 T pathways. Amplified c-MET pro-
motes downstream signal transduction through bypass
activation to avoid cell death by EGFR-TKIs. This pro-
motes the proliferation of cancer cells, which ultimately
leads to the resistance of patients to EGFR-TKIs. There-
fore, it is necessary to simultaneously inhibit EGFR and
MET to overcome the EGFR-TKI resistance caused by
MET amplification [8, 9]. Although MET amplification
can occur with the T790M mutation, approximately
60% of MET amplifications do not involve the T790M
mutation. There is a negative correlation between T790
M and MET amplification, indicating that these two
mechanisms have complementary or independent roles
in acquired resistance [10].
Osimertinib (AZD9291 or TAGRISSO™) is representa-

tive of the third generation of EGFR-TKIs and has been
approved by the FDA for patients with locally advanced
NSCLC or NSCLC patients who are positive for the
EGFR T790M mutation. Currently, it is also approved
as the first-line treatment for patients with NSCLC har-
boring EGFR mutations (exon 19 deletion or exon 21
L858R mutation). Although osimertinib has achieved
great clinical success, it still cannot avoid acquired re-
sistance. Apart from some of the mechanisms involved
in C797S mutations and MET amplification, the mech-
anism of resistance is largely unknown [11]. For the
C797S mutation, a fourth generation of EGFR-TKIs,
such as EAI045, has been developed [12]. This review
will focus on the role of MET amplification in the ac-
quired resistance of osimertinib and other third-
generation EGFR-TKIs.

MET structure and function
MET is a proto-oncogene located in the long arm of hu-
man chromosome 7 (7q21–31); it is approximately 125
kb in length and contains 21 exons [13]. Its protein
product c-MET is a tyrosine kinase receptor, which con-
tains structural regions such as the Sema region and 4
IPT regions, including the PSI region, JM region, TK re-
gion and TM region. The Sema region is a ligand-
binding region, and the JM region contains several tyro-
sine phosphorylation sites and has a function of initiat-
ing tyrosine kinase activity [13, 14]. The ligand of MET
is human hepatocyte growth factor (HGF), belonging to
the plasminogen family, that consists of the N-terminal,
Kringle domain and C-terminus. Mature HGF is a het-
erodimer formed by a disulfide bond between the α
chain and β chain produced by a proteolytic enzyme in a
precursor and has the function of activating MET [3,

15]. When HGF binds to MET, the autophosphorylation
of Y1234 and Y1235 in the intracellular tyrosine kinase
domain occurs, resulting in the autophosphorylation of
Y1349 and Y1356 at the C-terminal multifunctional
docking site (Fig. 1). This induces the recruitment of
several intracellular effector adaptor proteins, such as
growth factor receptor binding protein 2 (Grb2), GAB1,
SRC and PI3K, thereby activating downstream signaling
pathways [14, 16]. The HGF/MET signaling pathway is
expressed in both embryonic and adult bodies under
certain physiological conditions [17]. During embryonic
development, the HGF/MET signaling pathway plays an
important role in promoting mitosis and inducing mor-
phogenesis; in adults, this signaling pathway plays a role
in repair and regeneration after tissue damage. The main
types of HGF/MET signaling pathway variants in
NSCLC patients are a few mutations, amplifications,
exon 14 skip mutations and rearrangements [15, 18].
The role of MET amplification and protein hyperacti-

vation in conferring resistance to third-generation
EGFR-TKIs was assessed. We found that the EGFR mu-
tation NSCLC cell line (HCC827/ER) resistant to erloti-
nib had MET gene amplification and protein
overactivation and was cross-resistant to osimertinib and
rociletinib. In addition, HCC827 cells (HCC827/AR),
which have acquired resistance to osimertinib, also show

Fig. 1 Protein structure of MET
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MET gene amplification and protein overactivation.
Compared with the parental cell line, the p-MET level is
increased, and these cells are not only resistant to rocile-
tinib but also to erlotinib [19]. With small molecule
MET inhibitors or knockdown of MET gene expression,
osimertinib restores the ability to inhibit HCC827/ER
and HCC827/AR cell growth and inactivate ErbB3 or in-
hibit ErbB3 phosphorylation in vitro and in vivo. Our
studies suggest that MET amplification and protein
overactivation may be a common resistance mechanism
for the first and third generation of EGFR-TKIs. Treat-
ment with osimertinib or other third-generation EGFR-
TKI monotherapy may be ineffective due to MET ampli-
fication and/or protein overactivation.
Recent studies have reported similar results. Many la-

boratories constructed HCC827 cell lines resistant to erlo-
tinib with MET amplification and protein overactivation,
and the cells were resistant to osimertinib [20]. H1975-P1
cells resistant to AC0010 were derived from a nude mouse
model of H1975 xenograft tumors in nude mice. After 3
months of treatment or selection with AC0010, the cells
overexpressed the MET gene, MET protein and p-MET
gene and were resistant to afatinib, osimertinib and rocile-
tinib [21]. In the PC-9/NaqR2 cell line (derived from the
EGFR mPC-9 cell line), MET amplification was also de-
tected with elevated levels of MET and p-MET. This cell
line is resistant to gefitinib but sensitive to the combin-
ation of naquotinib and MET inhibitors (crizotinib or
SGX532).

Detection of MET dysregulation
Dysregulated MET expression and activity in human
cancer tissues can be detected at the gene and protein
levels. The following assays were performed to deter-
mine MET dysregulation. Fluorescence in situ
hybridization (FISH): the MET gene copy numbers were
obtained by detecting the site number of MET and
CEP7 (as the control). Its advantage is high accuracy,
good repeatability, good correlation with the curative ef-
fect, and use of fewer specimens; however, MET protein
expression on the cell surface but not MET amplifica-
tion could be detected [22]. Droplet digital PCR
(ddPCR): the difference in fluorescence signal strength
between the amplificated MET site and internal refer-
ence site was detected. Its advantages are high accuracy
and rapid detection speed, but a large amount of high-
quality DNA fragments is required [23]. Immunohisto-
chemistry (IHC): tissues and cells positive for MET ex-
pression were identified by evaluating the staining status
of the cells. Based on MetMAb criteria, a staining score
of 2 or 3 is defined as high MET expression, whereas a
score of 0 or 1 is defined as low MET expression. The
advantages of IHC are that it is a vetted technique, pro-
duced rapid and repeatable results in many cases, allows

for simultaneous observation of cell morphology, and
has a low cost, but the disadvantages are the subjective
interpretation of the results ease of sample disruption
during the testing process [24]. Next-generation sequen-
cing (NGS): copy number variation (CNV) can be esti-
mated by calculating the sequencing depth of the region
where the MET gene is located. Its advantages are the
parallel detection of multiple genes from a single tissue
or blood sample, the detection of all mutations present
at one time, and its high sensitivity. Its shortcomings are
high cost, requirement of specialized NGS sequencing
equipment, and extensive technical requirements to per-
form the assay [25].
A recent study showed that liquid biopsy to detect

MET is feasible. MET changes occurred in 7.1% of pa-
tients on liquid biopsy, which was higher than the fre-
quency found in tissue (1.14%; P = 0.0002). The study
included ctDNA sequencing results from 438 patients
and analyzed the relationship between MET expression
and clinicopathological parameters. The results showed
that MET ctDNA alterations were associated with a
poorer prognosis and higher numbers of genomic abnor-
malities and bone metastases [26].

MET amplification
An increase in the copy number of the MET gene can
occur in either the polyploid or amplification process.
Polyploidy is the replication of a chromosome, and amp-
lification is the replication of a local or regional gene.
FISH can be used to detect the value of MET/CEP7 to
distinguish between polyploidy and amplification. Poly-
ploidy does not involve driver genes, and MET amplifi-
cation may be a driver gene mutation and one of the
main mechanisms of EGFR-TKI resistance. There is no
consensus on how many copies of MET are defined as
positive. One study used FISH to evaluate MET copy
number in lung adenocarcinoma, associated clinical and
molecular characteristics were captured. The MET/
CEP7 ratio is currently classified into low (< 2.2),
medium (> 2.2, < 5) or high (≥ 5), A MET/CEP7 FISH
ratio of 5 or higher is defined a “MET-positive” group
with no oncogenic overlap. As this method and criteria
are also associated with the highest response rate to
MET inhibition, they represents the clearest definition of
a MET copy number gain-addicted state [27, 28].

MET overexpression
MET overexpression can be caused by gene amplifica-
tion, gene mutation, transcriptional enhancement, or
posttranscriptional mechanisms. Immunohistochemistry
(IHC) can be used to detect the overexpression of MET
in tissue specimens. In different studies, the proportion
of MET overexpressed in NSCLC varies greatly from 15
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to 70% due to differences in experimental reagents and
threshold settings.

Detection of MET amplification
MET amplification was detected in third-generation
EGFR-TKI-resistant EGFR-mutant NSCLC, but the re-
sults from different studies were not identical. Le et al.
[20] detected 5 MET amplifications in 42 patients with
osimertinib resistance, accounting for approximately
14%. Piotrowska et al. [29] detected 7 MET amplifica-
tions in 32 patients with osimertinib resistance, account-
ing for approximately 22%. In the AURA3 study, MET
amplification was seen in approximately 19% of the
plasma samples from 73 patients taking antibiotics with
the second-line treatment of osimertinib, exceeding the
percentage of EGFR C797 secondary mutations (15%),
which is the most common drug resistance mechanism.
A similar analysis was performed in other third-
generation EGFR-TKI studies. In a study of AC0010-
resistant EGFR-mutant NSCLC patients, MET amplifica-
tion as detected in only 1 of 16 patients, accounting for
approximately 6.25% [30].
Currently, most studies have focused on the resistance

mechanisms of osimertinib and other third-generation
EGFR-TKI second-line treatments. There are few studies
on the first-line treatment of EGFR mutation-positive
advanced NSCLC with osimertinib, which may be re-
lated to its recent approval. A study presented at the
2018 European Society for Medical Oncology (ESMO)
annual meeting used NGS technology to analyze 91
plasma samples from patients undergoing first-line treat-
ment with osimertinib; MET amplification was detected
in 15% of the samples and EGFR in 7% of the samples.

The C797S mutation suggests that MET amplification is
the most common acquired resistance mechanism [31].

MET amplification leads to treatment strategies
for EGFR-TKI resistance
The underlying mechanism by which MET amplification
leads to EGFR-TKI resistance is associated with the acti-
vation of the EGFR-independent phosphorylation of
ErbB3 and the downstream activation of the PI3K/AKT
pathway, providing a bypass signaling pathway even in
the presence of EGFR-TKIs [9]. Therefore, it is necessary
to simultaneously inhibit EGFR and MET to overcome
the EGFR-TKI resistance caused by MET amplification
(Figs. 2, 9]. A number of studies have shown that
HCC827/ER cells and HCC827/AR cells have MET
amplification in vitro and in vivo, and gene-knockout
MET or small molecule MET inhibitors combined with
osimertinib can effectively inhibit the growth of these
two cells [19, 21, 32, 33]. A similar finding was also re-
ported in the clinic. In patients who were resistant to
osimertinib and who were tested for MET expansion, a
combination of EGFR-TKI and crizotinib was used, and
the effect was evaluated as partial response (PR) [11]. In
another case, a patient with NSCLC carrying the EGFR
L858R mutation was treated with erlotinib in the first
line. After progression, MET amplification was found in
the genetic test. The combination of full-dose osimerti-
nib and crizotinib was given. The therapeutic effect was
evaluated as PR. The combination was well tolerated in
patients [34]. This finding suggests that MET inhibitors
combined with osimertinib or other third-generation
EGFR-TKIs for EGFR-TKI resistance induced by MET
amplification may be a new therapeutic strategy that
needs further validation in the clinic.

Fig. 2 MET amplification causes EGFR-TKI resistance by activating EGFR-independent phosphorylation of ErbB3 and consequent downstream
activation of the PI3K/AKT pathway, providing a resistance mechanism that can bypass the effects of an EGFR-TKI. MET can also activate PI3K/Akt
signaling through ErbB3
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In addition, the inhibition of MEK by small molecule
MEK inhibitors such as trametinib (GSK1120212) is also
an effective and feasible solution to overcome MET-
induced acquired resistance to osimertinib [35]. Studies
have shown that different MEK inhibitors can inhibit the
growth of HCC827/AR cells or tumor growth in vitro
when combined with osimertinib and can induce apop-
tosis [35]. Compared with MET inhibitors, MEK inhibi-
tors not only inhibit the growth of cells with MET
amplifications but also inhibit the growth of other drug-
resistant cell lines with different potential mechanisms
[35]. Thus, the use of MEK inhibitors is also an option
in clinical treatment.
Currently, two small molecule c-MET inhibitors, cabo-

zantinib and crizotinib, have been approved by regula-
tory authorities for the treatment of selected cancer
types, but several novel c-MET inhibitors are currently
in trials for different settings [34, 36–38]. MET inhibi-
tors can be divided into three categories: small molecule
MET receptor inhibitors (such as crizotinib, tivantinib,
savolitinib, tepotinib, cabozantinib and foretinib), mono-
clonal antibodies targeting the MET receptor (such as
onartuzumab) and anti-HGF antibodies (such as ficlatu-
zumab and rilotumumab) [17, 39–44]. Some MET inhib-
itors in combination with EGFR-TKIs have been studied
in patients, but this treatment regimen has not shown
significant efficacy in patients with unselected
NSCLC. Some positive results were obtained in pa-
tients with MET amplification or overexpression.
Therefore, MET may be an effective therapeutic tar-
get for NSCLC patients with EGFR-TKI resistance
and MET expansion [45].
Immunotherapy has emerged as a new topic in ad-

vanced lung cancer research and has made break-
throughs in the first-line and second-line treatment of
advanced NSCLC [46–49]. However, immunotherapy is
not effective in patients with EGFR-mutant NSCLC [49].
Recent studies have shown that in MET-amplified tu-
mors, treatment with MET inhibitors can counteract
interferon-gamma-mediated induction of the PD-1 lig-
and [50]. In studies of liver cancer cell lines and mice
with orthotopic tumors, MET mediated the phosphoryl-
ation of and activated GSK3B, leading to decreased
PDL1 expression. When combined with a MET inhibi-
tor, anti-PD1 and anti-PDL1 antibodies elicited an addi-
tive effect to slow the growth of HCC cells in mice [51].
Therefore, whether an anti-MET drug can be combined
with a PD-1 or PD-L1 inhibitor to treat EGFR-mutant
NSCLC resistant to osimertinib due to MET amplifica-
tion and/or overactivation requires further investigation.

Conclusions
A significant correlation between MET receptor overex-
pression/hyperactivation and poor outcomes has been

demonstrated in different solid tumors, including
NSCLC. Many new molecules that either target MET or
act as multitarget inhibitors are emerging and exhibit
antitumor activity. MET inhibitors have shown promis-
ing antitumor activities in preclinical and early phase
clinical trials of several tumor types, although the results
of most phase III trials with these agents have been less
encouraging. But with the efforts of translational and
clinical research, an increasing number of MET-targeted
therapies will surely have a positive impact on lung can-
cer outcomes, and these treatments should be included
as one of the possible therapeutic options for patients
with NSCLC.
Osimertinib is currently approved by the FDA for the

treatment of EGFR-mutant NSCLC with a T790 muta-
tion after relapse following first- or second-generation
EGFR-TKI therapy (second-line). However, approxi-
mately 20% of these patients are not sensitive to treat-
ment with osimertinib. Based on our findings, we believe
that it is necessary to detect the MET status prior to osi-
mertinib treatment. Patients with EGFR-mutant NSCLC
may be insensitive to osimertinib or other third-
generation EGFR-TKIs. Combination therapy with a
combination of MET or MEK inhibitors may be con-
sidered for these patients. In the last few years, anti-
PD1/PD-L1 drugs have become a new paradigm in
oncology, and based on current research, anti-PD1
and anti-PDL1 antibodies combined with a MET in-
hibitor may finally represent an effective treatment of
EGFR-mutant NSCLC.
MET amplification and MET protein expression are

often detected in clinical practice, but there are few
studies on p-MET. MET-amplified EGFR-mutant
NSCLC cell lines not only have high levels of MET but
also have high levels of p-MET [19]. Therefore, the de-
tection of p-MET and its potential as a predictive
marker should be explored.
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