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Mesothelin as a biomarker for targeted
therapy
Jiang Lv1,2,3 and Peng Li1,2*

Abstract

CAR-T cell therapy targeting CD19 has achieved remarkable success in the treatment of B cell malignancies, while
various solid malignancies are still refractory for lack of suitable target. In recent years, a large number of studies
have sought to find suitable targets with low “on target, off tumor” concern for the treatment of solid tumors.
Mesothelin (MSLN), a tumor-associated antigen broadly overexpressed on various malignant tumor cells, while its
expression is generally limited to normal mesothelial cells, is an attractive candidate for targeted therapy. Strategies
targeting MSLN, including antibody-based drugs, vaccines and CAR-T therapies, have been assessed in a large
number of preclinical investigations and clinical trials. In particular, the development of CAR-T therapy has shown
great promise as a treatment for various types of cancers. The safety, efficacy, doses, and pharmacokinetics of
relevant strategies have been evaluated in many clinical trials. This review is intended to provide a brief overview of
the characteristics of mesothelin and the development of strategies targeting MSLN for solid tumors. Further, we
discussed the challenges and proposed potential strategies to improve the efficacy of MSLN targeted
immunotherapy.
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Background
The discovery and function of MSLN
The MSLN gene encodes a 71-KD precursor, which is a
glycosylphosphatidylinositol (GPI)-anchored membrane
glycoprotein that is cleaved into two products at arginine
295 (Arg295): a soluble 31-KD N-terminal protein called
megakaryocyte potentiating factor (MPF) and a 40-KD
membrane-bound fragment called MSLN (mesothelin).
Both MPF and MSLN are bioactive, but their exact func-
tions remain unclear. MPF was initially reported to
stimulate megakaryocyte colony formation in the pres-
ence of interleukin-3 in mice but not alone [1], while its
activity is unknown in humans. MSLN was first de-
scribed as a membrane protein expressed on mesotheli-
oma and ovarian cancer cells [2] and normal mesothelial
cells [2, 3]. A previous study showed that MSLN seemed

to be a nonessential component in normal cells, as
MSLN knockout mice did not present with abnormal
development or reproduction [4]. In contrast, preclinical
and clinical studies showed that aberrant MSLN expres-
sion on tumor cells plays an important role in promot-
ing proliferation and invasion [5]. MSLN has also been
identified as a receptor of CA125 that mediates cell
adhesion [6]. The interaction of CA125 and MSLN play
an important role in ovarian cancer cell peritoneal
implantation and increase the motility and invasion of
pancreatic carcinoma cells [7–9]. The overexpression of
MSLN could activate the NFκB, MAPK, and PI3K path-
ways and subsequently induce resistance to apoptosis
[10] or promote cell proliferation, migration, and metas-
tasis by inducing the activation and expression of MMP7
[9] and MMP9 [5]. An increase in tumor burden and
poor overall survival are associated with elevated MSLN
expression according to clinical observations [11, 12].
Structural prediction revealed that a superhelical struc-
ture with armadillo-type repeats constitutes a part of its
three-dimensional structure [13], and the structure of an
N-terminal fragment that binds to the Fab SS1 antibody
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has been clarified [14], but the structure of the whole
protein is still unclear.

Expression of MSLN in malignant cells and prognosis
Generally, MSLN is expressed on normal mesothelial
cells in the pleura, pericardium, and peritoneum and in
epithelial cells on the surface of the ovary, tunica vagina-
lis, rete testis, and fallopian tubes in trace amounts [3].
In contrast, the aberrant overexpression of MSLN is
observed in various cancer cells. MSLN was initially
characterized in mesothelioma and ovarian cancer by
Chang et al. with the mAb K1 [15]. Chang and col-
leagues found that MSLN was present in 10 of 15 non-
mucinous ovarian cancers and absent in all 4 mucinous
ovarian cancers examined [2]. In addition, all 15 cases of
epithelial mesothelioma, but none of the 4 cases of
sarcomatous mesothelioma, expressed MSLN [16]. This
was in line with the results of another independent study
that confirmed MSLN reactivity in all 44 epithelioid
mesotheliomas and in the epithelial components of 3
biphasic mesotheliomas, but not in any of 8 sarcomatous
mesotheliomas examined [17]. According to the statis-
tics in this study, MSLN was present in 15 of 48 (31%)
lung cancers (adenocarcinomas (12/31) and squamous
carcinomas (limited, 3/17)) and in 42 of 86 (49%) non-
pulmonary adenocarcinomas (ovary (14/14), peritoneum
(5/5), endometrium (6/9), pancreas (10/11), stomach (2/
4), and colon (5/16); none of 12 breast, 9 kidney, 4 thy-
roid, and 2 prostate cancers showed evidence of MSLN)
according to assays with the 5B2 anti-MSLN monoclonal
antibody. MSLN was immunohistochemically evaluated
in 596 lung carcinomas of different types by Miettinen
M and Sarlomo-Rikala M in 2003 [18]. MSLN reactivity
was observed in 78 of 148 (53%) adenocarcinomas, 29 of
124 (23%) squamous cell carcinomas and 15 of 118
(13%) large cell carcinomas but was absent in small cell
carcinomas. These results suggest that MSLN could act
as an immunohistochemical biomarker for the determin-
ation of the subtype classification of mesotheliomas and
lung cancer to a certain degree because of its specific
expression pattern in these two cancers. MSLN is
expressed in the majority of pancreatic cancers, and
independent studies revealed that almost 100% of
pancreatic cancers are positive for MSLN but that
normal pancreatic tissues did not show evidence of
MSLN [3, 19, 20]. Subsequent studies demonstrated
the expression of MSLN in a broad spectrum of solid
tumors with distinct frequency and distribution patterns,
including extrahepatic biliary cancers (95%), triple nega-
tive breast cancer (66%), endometrial carcinomas (59%),
colorectal carcinomas (30%), cervical carcinomas (25%)
and esophageal (46%), endometrial (89%) and thymic
cancer [3, 21–26]. A recent study reported that 25.6% of
117 patients with gastric carcinoma showed high levels of

MSLN expression, which was associated with a poor prog-
nosis [27]. We also detected MSLN expression to different
degrees in 9 gastric cancer tissues but not in normal
gastric tissue [28]. The elevated expression of MSLN was
correlated with poorer prognoses in patients with ovarian
cancer [29], cholangiocarcinoma [30, 31], lung adenocar-
cinoma [29, 32], triple negative breast cancer [4, 33] and
resectable pancreatic adenocarcinoma [34–36].
In addition, MSLN is shed into the serum of patients

with solid tumors, in which it is referred to as soluble
MSLN-related protein (SMRP) [37]. The production of
SMRP could be associated with abnormal splicing, which
results in a secreted form or its cleavage from the mem-
brane by the TNFα-converting enzyme ADAM17 [38].
SMRP was also identified as a promising cancer bio-
marker in the sera of patients with mesothelioma, in
which elevated SMR levels in serum was correlated with
advanced stage and increased disease burden [37, 39].
However, the sensitivity and specificity of SMRP as a
tumor marker in ovarian cancer was limited [40]. The
value of soluble MSLN in diagnosis and the prediction
of cancer progression remains to be determined, and its
combination with other tumor markers may be more
precise for diagnosis.

Targeted therapy
Given that MSLN expression is rather limited in several
normal tissues but highly elevated in the solid tumors
mentioned above, MSLN is a potential target for anti-
gen-specific therapy (Fig. 1).

Antibody-based drugs
Antibody-based drugs are used to target and kill tumor
cells via neutralization by antibodies, antibody-dependent
cell-mediated cytotoxicity (ADCC), antibody-dependent
cell-mediated phagocytosis (ADCP) or antibodies conju-
gated with effector molecules (toxins or inhibitors), which
mediate apoptosis or suppress cell proliferation.
The specific uptake of the indium111−labeled MSLN

antibody K1 by tumor cells was observed by Hassen et
al. [41]. The conjugation of a fragment of Pseudomonas
exotoxin A (PE) to this antibody resulted in cytotoxicity
in MSLN-expressing cell lines and tumor regression in
tumor-bearing mice [42]. A new murine-derived anti-
body with higher affinity termed SS1 was produced via
phage display and hotspot mutagenesis [43, 44]. The fu-
sion of the PE38 portion to SS1 resulted in a recombin-
ant immunotoxin (RIT) termed SS1P, which enters cells
by receptor-mediated endocytosis and induces apoptosis
by inactivating elongation factor 2 to impede protein
synthesis [45]. Many drugs based on the MSLN anti-
body SS1 or other modified and humanized versions
have been developed for targeted therapy (Table 1).
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SS1P
SS1P has been tested in several clinical trials that en-
rolled patients with advanced cancers. In an early phase
I clinical trial (NCT00066651) [48], the dose-limiting
toxicities (DLTs), maximum tolerated dose (MTD) and
pharmacokinetics (PK) of SS1P were tested in 34 patients
with mesothelioma (n = 20), ovarian cancer (n = 12) and
pancreatic cancer (n = 2). With a limited sample size, this
clinical trial demonstrated that the combination of SS1P
with prednisone can reduce the risk of toxicity due to
SS1P and allow the use of an increased drug dosage. No
significant pericardial toxicity was observed in any of the
patients, which suggested that the MSLN antibody SS1P
presented less risk to pericardial mesothelial cells. Among
the 33 evaluable patients, 4 had a partial response (PR), 19
had stable disease (SD), and 10 had progressive disease
(PD). However, SS1P was proven to be immunogenic in a
later clinical trial (NCT00006981) [49]. Twenty-four
patients with chemo-resistant solid tumors received SS1P
treatment at dosages of 4, 8, 12, 18, and 25 μg/kg/day
(× 10). One patient had a PR, 12 had SD, and 11 had

PD. It is noteworthy that high levels of neutralizing
antibodies against SS1P were detected in 75% of patients,
which could undermine the anti-tumor efficacy.
Given that the administration of SS1P alone showed a

moderate effect, the combination therapy might be more
effective. In the clinical trial NCT01362790 [47], 10
patients with chemotherapy-refractory mesothelioma
received SS1P in combination with pentostatin and cyclo-
phosphamide. Three patients had a PR (44% ~ 74%), 3 had
SD and 4 had PD. Adverse events were evaluated for all
patients. Grade 3 toxicities, including noncardiac chest
pain, pleuritic pain, and back pain (9% each) were ob-
served, but no grade 4 toxicities were observed in patients.
Meanwhile, adverse events associated with pentostatin or
cyclophosphamide, such as grade 4 lymphopenias, were
observed in all patients. In contrast to the trials described
above, the involvement of pentostatin and cyclophospha-
mide delayed the formation of neutralizing antibodies to
SS1P, thereby allowing a prolonged period of therapy.
SS1P combined with pemetrexed and cisplatin was further
tested for treating chemotherapy-naive patients with

Fig. 1 MSLN-targeted therapy strategies. a, the precursor protein is cleaved into two products, i.e. soluble protein MPF and GPI-anchored
membrane protein MSLN; b, anti-MSLN antibody derived scFv, Fab, or intact/modified antibody are conjugated with the effector molecules
(inhibitor or toxin) and induce cell death after binding to tumor cells; c, the binding of amatuximab to MSLN expressed on tumor cell membrane
leads to ADCC; d, HPN536 directs T cells to kill tumor cells expressing MSLN; e, cancer vaccines arouse tumor specific immune response; f, the T
cells are engineering to express CAR and redirected to tumor cells
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advanced malignant pleural mesothelioma (MPM)
(NCT01445392) [46]. Of the 20 evaluable subjects, 12 pa-
tients had a PR, 3 had SD, and 5 had PD. Notably, the
changes in the relative serum levels of MSLN, MPF and
CA125 were significantly correlated with responses (PR >
SD > PD). These biomarker levels were generally de-
creased in 12 patients who received PR but were substan-
tially increased in 5 patients who had PD.

Amatuximab
Amatuximab (MORAb-009) is a chimeric monoclonal
antibody consisting of the SS1 scFv fused to the human
IgG1 and κ constant regions. The binding of amatuxi-
mab to MSLN expressed on tumor cell surfaces leads to
ADCC.
Two clinical trials (NCT00570713 and NCT00738582)

showed that no severe (grade 3 or 4) drug hypersensitiv-
ity adverse events (DHAEs) were observed in any of the
subjects. Among the 20 of 24 patients evaluable for re-
sponse, none had complete or partial responses, and
only 11 patients had SD and 9 had PD [52]. MORAb-
009 treatment resulted in a remarkable elevation in
serum CA125 levels in all 8 patients under surveillance,
possibly due to the interruption of binding between
MSLN and CA125 by amatuximab, which could pre-
vent the intraperitoneal/intrapleural metastasis of
ovarian cancer and mesothelioma [53]. A clinical trial
(NCT01018784) in Japanese patients with mesotheli-
oma, pancreatic adenocarcinoma or other MSLN-posi-
tive solid tumors revealed that the weekly single
administration of amatuximab in 4-week cycles at in-
creasing doses ranging from 50 to 200 mg/m2 led to
limited treatment effects. Three of the 17 patients
had SD, and 14 had PD [51].
The anti-tumor effect of amatuximab in combination

with pemetrexed and cisplatin was elevated in 89 pa-
tients at 26 centers (NCT00738582) [54]. Amatuximab
in combination with pemetrexed and cisplatin was ad-
ministered according to the response (PR or SD) for up
to 6 cycles. Thirty-three patients had a PR, and 42 had
SD. The detection of the change in the MPF level in
serum before and after treatment in 59 patients also
showed that the decreased MPF level was correlated
with good prognosis. The combination therapy led to se-
vere adverse events, including hypersensitivity reactions,
neutropenia, and atrial fibrillation. Dyspnea and fatigue
were observed during the maintenance phase.
An 111Indium (111In) radiolabel was used to characterize

the biodistribution and dosimetry of amatuximab in 6
patients (4 with malignant mesothelioma and 2 with
pancreatic adenocarcinoma) [60]. SPECT/CT imaging
showed 111In-amatuximab uptake in both primary
tumors and metastatic sites and that uptake was in-
creased in mesothelioma compared with that in

pancreatic cancer. Notably, 111In-amatuximab uptake in
the heart, liver, kidneys and spleen was also confirmed.
Even so, amatuximab was generally well tolerated.
Amatuximab PK was characterized in the clinical trial
NCT02357147. It revealed that higher amatuximab expos-
ure in combination with chemotherapy was associated
with prolonged OS [50].

Anetumab ravtansine
Anetumab ravtansine, also referred to as BAY94–9343,
is a human anti-MSLN antibody fused to DM4, which is
a maytansinoid tubulin inhibitor that mainly affects
proliferating cells. The specific binding of BAY94–9343
to MSLN with high affinity induces efficient antigen
internalization. BAY94–9343 showed dose-dependent
anti-tumor efficacy and bystander effects in xenogeneic
tumor models [56]. The antitumor efficacy of anetumab
ravtansine in combination with pegylated liposomal
doxorubicin (PLD), carboplatin, copanlisib and bevacizu-
mab was investigated for the treatment of ovarian can-
cer. The involvement of combination therapy showed
enhanced anti-proliferative activity and increased apop-
tosis in vitro and improved in vivo efficacy in tumor-
bearing mice [55]. The safety, tolerability, pharmacokin-
etics, and pharmacodynamics were then evaluated in
clinical trials. Several phase 1/2 studies were carried out
to explore the dosage and side effects of anetumab rav-
tansine when administered together with pemetrexed,
cisplatin, PLD, itraconazole, gemcitabine, pembrolizu-
mab, atezolizumab, gemcitabine hydrochloride, ipilimu-
mab or nivolumab (Table 1). However, only one clinical
trial data for anetumab ravtansine was submitted to
ClinicalTrials.gov prior to the submission of this review.

DMOT4039A
DMOT4039A is a humanized anti-MSLN mAb
(h7D9.v3) fused to the antimitotic agent monomethyl
auristatin E (MMAE) [61]. It inhibited cell proliferation
at an IC50 of 0.3 nmol/L and regressed tumor growth in
a dose-dependent manner in a mouse model. In another
clinical trial (NCT01469793), DMOT4039A was admin-
istered to 71 patients with pancreatic cancer (n = 40) or
ovarian cancer (n = 31) [62]. Fifty-four patients received
a DMOT4039A injection every 3 weeks (2.4–2.8 mg/kg;
q3w), and 17 patients received an injection weekly (0.8–
1.2 mg/ kg). Hyperglycemia (grade 3) and hypophospha-
temia (grade 3) were observed in 2 patients treated with
DMOT4039A every 3 weeks at a dosage of 2.8 mg/kg
but no DLTs were observed in patients treated with
other dosages. Related severe adverse events occurred in
5 patients at a dosage of 2.4–2.8 mg/kg every 3 weeks
and one patient at a dosage of 1.2 mg/kg weekly. Cumu-
lative peripheral neuropathy (grades 1–3) was observed
in 14 patients due to microtubule inhibitors. Six patients
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(4 ovarian cancer; 2 pancreatic cancer) treated with
DMOT4039A at 2.4 to 2.8 mg/kg had a PR.

BMS-986148
BMS-986148 is an antibody-drug conjugate that might
be related to MDX-1204, which contains a MAb conju-
gated to the potent alkylating agent duocarmycin
(MED2460) and causes cell death after internalization by
target cells [57]. A clinical trial was carried out to evalu-
ate the safety, tolerability, pharmacokinetics, immuno-
genicity, antitumor activity and pharmacodynamics of
BMS-986148 administered alone and in combination
with nivolumab in selected patients with mesotheli-
oma, nonsmall cell lung cancer (NSCLC), ovarian
cancer, pancreatic cancer and gastric cancer. This
study aimed to enroll over 400 patients from 12
countries (NCT02341625). Another phase 1 clinical
trial (NCT02884726) in Japan has been completed.

LMB-100/ RG7787
LMB-100/ RG7787 is a re-engineered version of a hu-
manized anti-MSLN Fab based on SS1 that is fused to a
truncated and deimmunized PE24 moiety with higher
activity and less immunogenicity [63]. LMB-100 inhibits
protein synthesis [64] and is regulated by the tyrosine
kinase DDR1 [65]. The addition of a DDR1 inhibitor re-
sulted in the increased shrinkage of tumor xenografts.
The antitumor efficacy of LMB-100 for pancreatic can-
cer, triple negative breast cancer (TNBC), and gastric
cancer has been proven in preclinical studies [63, 66]. Its
combination with actinomycin D [67], Nab-Paclitaxel
[68], taxanes [69], and panobinostat [70] enhances its
antitumor activity. LMB-100 is currently undergoing
clinical testing in combination therapy in patients with
MSLN-positive malignancies.

BAY2287411
BAY2287411, a thorium-227-labeled antibody-chelator
conjugate, was administered to patients with tumors
known to express MSLN to evaluate the safety, tolerabil-
ity, maximum tolerated dose, PK, anti-tumor activity
and recommended dose for further clinical development
(NCT03507452). This phase 1 study started in June
2018. More than 200 participants may eventually be en-
rolled with nonrandomized allocation. A recent study
demonstrated that the combination of BAY2287411 with
the damage response inhibitors ATRi and PARPi re-
sulted in synergistic activity and increased anti-tumor ef-
ficacy [71].

HPN536
HPN536 is the most recent MSLN-targeting antibody-
based drug that is currently in clinical trials. It is a
MSLN-targeting TriTAC and includes three domains:

1. an anti-MSLN domain that binds to MSLN-positive
cells; 2. an anti-albumin domain antibody that ex-
tends its half-life; 3. an anti-CD3ε scFv that engages
T cells [72]. HPN536 activates T cells in the presence
of MSLN and directs T cells to kill cells expressing
MSLN. It has a half-life of approximately 5 days and
is well tolerated in cynomolgus monkeys subjected to
a single treatment at a 10 mg/kg dosage. NCI-H292
tumor growth was impeded in mice implanted with
human PBMCs and treated with HPN536. The associ-
ated phase 1/2a trial (NCT03872206) is a multicenter,
open-label study designed to evaluate the safety, toler-
ability, PK and activity of HPN536 in up to 80 pa-
tients with advanced cancers associated with MSLN
expression.
The short half-life and the immunogenicity of mur-

ine-derived antibodies and bacterial toxins have lim-
ited the efficacy of antibody-based drugs. To address
these issues, novel humanized or fully human anti-
MSLN antibodies and toxins with reduced immuno-
genicity need to be developed. Many studies have
attempted to do this. The insertion of a disulfide
bond to protect the furin cleavage site of SS1-PE24
improves its serum half-life and decreases its toxicity
[73]. A study suggested that the involvement of albu-
min-binding domains could prolong the half-life and
increase antitumor activity [74]. In addition, the re-
moval of B- and T-cell epitopes from RIT led to
greatly reduced antigenicity [75, 76]. Fully human
antibodies were also developed and verified in pre-
clinical studies [77, 78].

Vaccines
Cancer vaccines are designed to induce tumor-specific
immune responses in the host. A large number of stud-
ies have tested multiple platforms, including peptides,
proteins, antigen presenting cells, tumor cells, and viral
vectors [79]. The bacterium-based vaccine CRS-207,
which uses a live-attenuated Listeria monocytogenes
(Lm) strain ANZ-100 (Lm ΔactA/ΔinlB) engineered to
express human MSLN, has been used to treat MSLN-
positive cancers in clinical trials [59]. CRS-207 was eval-
uated in 17 subjects (7 with pancreatic ductal carcinoma
(PDA), 5 with mesothelioma, 3 with NSCLC, and 2 with
ovarian cancer) in a dose-escalation study with up to 4
doses (NCT00585845). CRS-207 was well tolerated at
the top dose (1 × 109 cfu). Immune activation was con-
firmed by a multiplexed serum cytokine assay and
phenotype analysis. Thirty-seven percent of subjects sur-
vived ≥15 months, but none of them had a PR. CRS-207
has also been used in combination with low-dose cyclo-
phosphamide and another vaccine, GVAX pancreas,
which is derived from an irradiated allogeneic GM-CSF
secreting cell line, in patients with metastatic PDA
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(NCT01417000) [58]. Sixty-one patients who received
CRS-207 and Cy/GVAX had longer overall survival
(6.1 months) than 29 patients treated with Cy/GVAX
alone (3.9 months). A follow-up study to test the im-
mune responses and efficacy produced by the com-
bination of CRS-207 and the GVAX pancreas vaccine
(with cyclophosphamide) compared to those produced
by chemotherapy or CRS-207 alone in adults with
previously treated metastatic pancreatic adenocarcin-
oma was conducted. The overall survival was 3.8
months for the cohort treated with Cy/GVAX + CRS-
207, 5.4 months for the cohort treated with CRS-207
alone, and 4.6 months for the cohort treated with
chemotherapy (NCT02004262).
JNJ-64041757 (previously referred to as ADU-214)

is a live-attenuated, double-deleted (LADD) Listeria
monocytogenes strain used as a potential treatment
for NSCLC that was engineered by Aduro Biotech,
Inc. in 2014. However, two clinical trials that
attempted to evaluate its efficacy alone or in com-
bination with nivolumab were both terminated due
to a lack of clinical benefit (NCT02592967 and
NCT03371381). A neoantigen DNA vaccine strategy
is currently being evaluated in pancreatic cancer pa-
tients following surgical resection and adjuvant
chemotherapy in an ongoing phase 1 clinical trial
(NCT03122106). Neoantigen DNA vaccines incorpor-
ate prioritized neoantigens, and personalized MSLN
epitopes will be administered intramuscularly using
the TDS-IM system. The estimated completion date
of this study is March 2022.
Despite the fact that there are few clinical trials of

MSLN-targeted vaccines and the results of these tri-
als have been disappointing, many preclinical studies
are still ongoing. One study showed that a cell-based
vaccine, Meso-VAX, in combination with the adeno-
associated virus (AAV)-IL-12 increased the number
of MSLN-specific T cells and the levels of anti-
MSLN Abs and enhanced tumor clearance activity in
mice [80]. The anti-tumor effects of the chimeric
DNA vaccine CTGF/MSLN (containing an antigen-
specific connective tissue growth factor linked to
with MSLN) in combination with an anti-CD40 Ab
and the TLR 3 ligand poly(I:C), which are essential
adjuvants for DC maturation, the immuno-modulator
EGCG and Meso-VAX in combination with (AAV)-
IL-12 were proven [81]. Recently, a MSLN-derived
epitope peptide restricted to HLA-A*2402 was shown
to be effective in inducing peptide-specific CTLs.
The MSLN-10-5 peptide-specific CTL clones showed
specific cytotoxic activity against HLA-A*2402-posi-
tive MSLN-expressing pancreatic cancer cells, indi-
cating that the peptide-based vaccine is a promising
candidate for therapy [82].

CAR-T therapy
The development of MSLN-targeting CAR-T cells
Chimeric antigen receptor T (CAR-T) cells are designed
to target cell surface antigens without MHC restriction.
Therefore, the CAR-T cells could be broadly applicable
in HLA-diverse allogeneic recipients. The CARs are re-
combinant receptors commonly consisting of an extra-
cellular antigen recognition domain, which is generally
derived from the single chain variable fragment (scFv) of
antibodies, transmembrane domains that function as an-
chors in the cytoplasmic membrane, and an intracellular
domain that transmits T cell activation signals. The
first-generation CARs consisted of only one intracellular
signaling domain, which was usually a CD3z chain, and
this was sufficient to initiate T cell activation but pro-
duced only short-term proliferative activity and a low
level of cytotoxicity. The second-generation CARs had
greatly improved potency through the incorporation of
another costimulatory molecule (CD28, 4-1BB, or OX40)
[83–85]. Furthermore, our team and other groups demon-
strated that the third-generation MSLN-targeting CARs
containing two costimulatory domains (CD28, 4-1BB,
TLR2, or DAP10) and a hinge domain were superior in
terms of cell proliferation, cytotoxicity, persistence and
tumor suppression efficacy [86–89]. The latest iteration,
the fourth-generation CARs, can additionally secrete cyto-
kines or other effector molecules, such as IL-12, IL-15, IL-
7, CCL19, or αPD-1, to regulate the immune microenvir-
onment [90–95].
Because MSLN is a highly specific antigen in several

cancers, CAR-T therapy has been proven to be a prom-
ising strategy for the treatment of these cancers. TNBC
is intractable due to the lack of an effective targeted
therapy. The presence of MSLN in 67% of TNBCs
provides a candidate target for CAR-T therapy of TNBC
[23]. MSLN-directed CAR-T cells were demonstrated to
induce cytotoxicity in MSLN-expressing pancreatic can-
cer cells in vivo depending on the MSLN expression
level to delay tumor growth and eliminate lung metasta-
ses in vivo [96, 97]. Our team previously demonstrated
that MSLN was also a promising target for treating lung
cancer and gastric cancer [28, 87]. We proved that third-
generation CAR-T could effectively delay tumor growth
or even completely eradicate subcutaneous tumors,
eliminate pulmonary and intraperitoneal metastases of
gastric cancer cells in mice and prolong survival. Simi-
larly, the effectiveness of this targeted strategy has also
been proven in bile duct carcinoma [98] and ovarian
cancer [99].
CAR-T cells are generally produced via lentivirus

transduction. The CAR genes are cloned into lentiviral
vectors and subsequently integrated into the host T cell
genome, allowing for the stable and permanent expres-
sion of the CAR. This method has been widely adopted
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because it is simple and reliable. Another method used
for the stable integration of the CAR gene into the T cell
genome is the piggyBac transposon system. The piggy-
Bac transposon system is an efficient nonviral method
for the genomic engineering of mammalian cells, includ-
ing pluripotent stem cells and human T lymphocytes,
and its advantages include a large cargo capacity,
nonrandom integration and the elimination of virus-
associated issues [100]. MSLN-targeting CAR-T cells
engineered by the piggyBac transposon system have been
proven to be cytotoxic to pancreatic cancer cells [97]
and bile duct carcinoma cells [98]. To avoid the risks as-
sociated with genomic integration, several studies have
proposed that CAR-T cells targeting MSLN could be
generated by RNA electroporation [99, 101]. The expres-
sion of the CAR was shown to be detectable 7 days after
electroporation. Multiple injections of RNA-electropo-
rated CAR T cells reduced tumor volumes in mice.
However, the CAR is transiently expressed and will be
completely eliminated over time as a result of the deg-
radation of the CAR mRNA [99, 101].
CAR-T cells are generally administered by systemic

delivery, such as intravenous injection. However, system-
ically delivered T cells need to pass through the barriers
created by multiple tissues before infiltrating into tu-
mors. Therefore, inefficient T cell infiltration and short
persistence are common obstacles for solid tumor ther-
apy by CAR-T. A recent preclinical study revealed that
regional intrapleural administration of CAR T cells re-
sulted in more robust proliferation and increased antitu-
mor efficacy with a long persistence of 200 days in an
orthotopic MPM model compared with that induced by
systemically infused T cells [102]. Similarly, we found
that the regional peritumoral delivery of CAR-T cells
produced enhanced tumor clearance in a subcutaneous
GC model [28]. The subcutaneous tumors in some mice
in the peritumoral delivery group were completely elimi-
nated, whereas a moderate effect was observed in the
group treated with intravenously injected CAR-T cells.
In addition, we found improved T cell infiltration in tu-
mors in the peritumoral delivery group. Overall, regional
delivery might enhance the therapeutic effects, but this
requires verification in clinical trials. To enhance T cell
infiltration, the MSLN-targeting CAR-T cells were also
engineered to express CCR2b, a chemokine receptor that
is minimally expressed on T cells, while the CCR2b lig-
and CCL2 is highly secreted by MPM [103]. The overex-
pression of CCR2b enhanced CAR-T cell cytotoxicity in
tumor cells and chemotaxis in response to CCL2 in
vitro. A 12.5-fold increase in T cell infiltration into tu-
mors and significantly enhanced tumor clearance were
observed in mice [103].
The tumor immune microenvironment is crucial in

regulating T cell immunosurveillance. The upregulation

of PD-L1 in tumor cells and the expression of inhibitory
receptors, including PD1, CTLA-4, TIM3, LAG3, and
2B4, on T cells always reduces the infiltration of T cells
into tumors and induces T cell exhaustion [95]. Recent
preclinical studies showed that PD-1/PD-L1 blockade or
CRISPR/Cas9-mediated PD-1 disruption could rescue
MSLN-targeted CAR-T cell responses in vivo [104, 105].
Based on this, CAR-T cells engineered to express
immune checkpoint antibodies (CTLA-4 and PD-1) or
to knock out PD-1 are being evaluated in clinical trials
[95] (NCT03030001, NCT03182803, NCT03615313,
NCT03545815, and NCT03747965). In addition to being
restricted by immune checkpoint molecules, the func-
tion of T cells is regulated by a variety of cytokines. The
depletion of IL-10 with a blocking antibody or via the
elevation of TNF-α and IL-2 levels by an oncolytic
adenovirus enhanced and prolonged the functioning of
MSLN-redirected CAR-T cells [106, 107].
MSLN-redirected CAR-T cells are also associated with

the “on target, off tumor” issue. Despite the fact that no
extensive or severe on-target toxicity against normal tis-
sues has been observed, a great deal of effort has been
made to avoid this problem. A promising strategy for
this involves the achievement of accurate tumor recogni-
tion by combinatorial antigen-sensing circuits, while
bispecific antibodies have proven more specific and po-
tent [108]. Another potential approach is to physically
separate the CD3ζ module from the costimulation mod-
ule by using two distinct CARs specific for different
antigens [109–111]. This structural design allows for
comparable anticancer activity and persistence with the
second-generation CAR-T cells only encounter both an-
tigens. Another strategy is to engineer T cells with a syn-
thetic Notch receptor that contains the core regulatory
domain derived from the signaling receptor Notch [112].
An extracellular antigen recognition domain and a syn-
thetic intracellular transcriptional domain were designed
to replace the native Notch domain. Upon binding to
the first antigen, the synthetic Notch receptor is cleaved
and releases the intracellular transcriptional domain to
activate the expression of the CAR, which recognizes the
second antigen.
We have noted that the immunogenicity of murine-de-

rived antibodies would limit their therapeutic effects in
humans. Similarly, the use of a CAR of murine origin
also limited the persistence of CAR-T cells in recipients.
The development of a CAR with a human-derived scFv
is needed to address this issue. A fully human MSLN-
targeting CAR (P4) was constructed and shown to be
enhanced in terms of cytokine secretion and cytotoxicity
in vitro and anti-tumor activity in vivo [113]. P4 CAR-T
cells were shown to be able to lyse MSLN-positive
tumor cells in vitro and in vivo, even in the presence of
soluble MSLN protein.
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Clinical trials of MSLN-targeting CAR-T cells
The majority of newly registered clinical trials targeting
MSLN in the past 3 years are related to CAR-T therapy.
CAR-T therapy has been a potent strategy for treating
MSLN-expressing tumors [86, 114]. CAR design has
been greatly optimized to enhance its performance [85].
The safety, effects and the maximum tolerated dose of
MSLN-targeting CAR-T cell therapy are currently being
evaluated in multiple phase 1/2 clinical trials (Table 2).
In a preclinical study, MSLN-targeting CAR-T cells

generated by the transfection of mRNA showed robust
antitumor activity and the transient expression of the
CAR. mRNA-based CAR-T cells (SS1–4-1BB CAR) were
proven to be well tolerated after multiple intravenous or
intratumoral infusions (NCT01355965) [115, 116]. A
confirmed partial response was observed in patients with
MPM or PDA. The serum levels of inflammatory cyto-
kines, including MIP-1β, granulocyte colony-stimulating
factor (G-CSF), IL-6, and IL-17, were transiently elevated
after each infusion of CAR-T cells [115]. CAR-T cells
were detected in tumors with reduced CAR transcripts
several days after administration. Notably, MSLN-target-
ing CAR-T cells were able to lyse primary tumor cells
and elicit a systemic antitumor immune response by in-
ducing epitope spreading [116].
In another recent phase 1 clinical trial, 6 patients with

chemotherapy-refractory metastatic PDAC were intra-
venously administered autologous MSLN-targeting
CAR-T cells 3 times weekly for 3 weeks [117]. Two pa-
tients had stable disease with PFS of 3.8 and 5.4 months.
A decrease in MSLN expression by 69.2% in one patient
was confirmed by biopsy. None of the 6 patients experi-
enced cytokine release syndrome or neurological symp-
toms. Noteworthily, no evident on-target/off-tumor
toxicity against normal tissues was observed in these pa-
tients [116, 117]. However, in addition to the short life
span of the CAR, another issue that might limit its po-
tency is the production of human anti-CAR antibodies
[115–117]. An anaphylactic response reported in one pa-
tient was attributed to the high production of IgE anti-
bodies specific to the CAR [115]. This suggests that a
fully human anti-MSLN scFv is urgently needed for clin-
ical use. Interestingly, a clinical trial that aims to impede
the production of antibodies via the depletion of B cells
by CD19-targeting CAR-T cells has been initiated
(NCT03497819). This clinical trial is active but is not
recruiting yet.
Regional delivery was proven to enhance T cell prolif-

eration, persistence and function in mice. Because of
this, regional delivery was applied to the clinical treat-
ment of patients. CAR-T cells were administered intra-
pleurally, intratumorally, or by vascular interventional
mediated injection (NCT02414269, NCT02706782,
NCT02959151, NCT03267173, and NCT03198052). We

still await the publication of the clinical outcomes to de-
termine the importance of regional delivery in the clinic.
CAR-T therapy is always accompanied by cytokine re-

lease syndrome (CRS) and neurotoxicity due to the ex-
cessive immune activation of CAR-T or non-CAR-T
cells, and the severity of this is associated with disease
burden, the CAR-T cell dose, high-intensity lymphode-
pletion and preexisting endothelial activation [118]. To
decrease the CAR-T-induced side effects, debulking
chemotherapy is recommended to reduce tumor burden
and the subsequent CAR-T dose, and tocilizumab could
be used to prevent severe CRS in the clinic [118]. To en-
hance the safety of CAR-T therapy and controllably
eliminate CAR-T cells when SAEs occur or tumors are
eliminated, inducible suicide genes, including iCaspase-
9, HSV-TK or EGFRΔ, could co-transduced with the
CAR genes [25]. Exposure to a synthetic dimerizing drug
would induce the dimerization of iCaspase-9 and lead to
cell apoptosis. This inducible T-cell safety switch involv-
ing iCaspase-9 has been proven to eliminate over 90% of
modified T cells within 30 min [119]. A MSLN-targeting
CAR-T therapy trial involving the use of iCaspase-9 is
currently recruiting (NCT03747965).

Conclusions
The expression pattern of MSLN provides an exciting
opportunity for its use in targeted therapy in various
types of malignant tumors, including pancreatic cancer,
ovarian cancer, lung cancer, TNBC and gastric cancer.
To date, antibody-based drugs have been effective in
inhibiting cancer progression and show acceptable “on
target, off tumor” toxicity, while vaccines have showed
moderate effects. The great improvements in CAR-T de-
sign allows them to be a promising therapeutic strategy
to treat MSLN-expressing tumors. The immunogenicity
of drugs and CAR-T cells, the low level of T cell infiltra-
tion into tumors and the high level of immunosuppres-
sion in the tumor microenvironment are obstacles that
need to be overcome. The combined use with check-
point inhibitors as well as additional strategies to reduce
drug resistance and optimize delivery regimens might
show promise in the future.
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