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Background: Cancer is a genetic disease; its development and metastasis depend on the function of many proteins.
Human serum contains thousands of proteins; it is a window for the homeostasis of individual's health. Many of the
proteins found in the human serum could be potential biomarkers for cancer early detection and drug efficacy

evaluation.

Methods: In this study, a functional proteomics technology was used to systematically monitor metabolic enzyme and
protease activities from resolved serum proteins produced by a modified 2-D gel separation and subsequent Protein
Elution Plate, a method collectively called PEP. All the experiments were repeated at least twice to ensure the validity of

the findings.

Results: For the first time, significant differences were found between breast cancer patient serum and normal serum
in two families of enzymes known to be involved in cancer development and metastasis: metabolic enzymes and
proteases. Multiple enzyme species were identified in the serum assayed directly or after enrichment. Both qualitative
and quantitative differences in the metabolic enzyme and protease activity were detected between breast cancer
patient and control group, providing excellent biomarker candidates for breast cancer diagnosis and drug

development.

Conclusions: This study identified several potential functional protein biomarkers from breast cancer patient serum. It
also demonstrated that the functional proteomics technology, PEP, can be applied to the analysis of any functional
proteins in human serum which contains thousands of proteins. The study indicated that the functional domain of the
human serum could be unlocked with the PEP technology, pointing to a novel alternative for the development of

diagnosis biomarkers for breast cancer and other diseases.

Keywords: Biomarkers, Diagnostic kits, Breast cancer, Functional proteomics, Enzyme activity, Hexokinases, Proteases,
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Background

Human breast cancer is a major cause of morbidity and
mortality in women. Data from the International Agency
for Research on Cancer (IARC) showed that the incidence
of cancer has increased all over the world. Regarding
breast cancer, the highest incidence rates were found in
the United States and Western Europe with 101 and 85
new cases per 100.000 women, respectively [1]. The
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American Cancer Society estimates that each year more
than 230,000 Americans women will be diagnosed with
this neoplasia and that more than 40,000 will die of the
disease in the United States. Presymptomatic screening to
detect early-stage cancer while it is still resectable with
potential for cure can significantly reduce breast cancer-
related mortality. Unfortunately, only about half of the
breast cancers diagnosed are before the metastatic stage
[2]. One reason that contributes to the poor prognosis of
patients diagnosed with breast cancer is the fact that the
diagnosis is often delayed due to limitations in mammog-
raphy. Screen-film mammography (SFM) is considered
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the gold standard for breast cancer screening and detec-
tion. However, its optimal performance is only observed
among women over 50 years old. Also, SEM has other
limitations such as high rates of false-negative (between 4
and 34%). In addition, there is a high rate of false-positives
that lead to unnecessary biopsy procedures [1].

In the last decade, many new technologies have been
utilized for biomarker discovery with significant progress.
Each of these technologies has focused on a different type
of biological entity such as circulating tumor cells (CTC),
extracellular vesicles, micro-RNAs and cancer-derived
cell-free DNA or circulating tumor-derived DNA (ctDNA)
[3-12]. However, several fundamental issues such as
tumor heterogeneity, plasticity and diversity of cancer
stem cells (CSC) make biomarker discovery and develop-
ment a challenging endeavor. The variation introduced
during sample collection and storage and the lack of
robust validation approach once biomarker leads are iden-
tified further complicate biomarker development. As a
result of these hurdles, there are currently no United
States FDA-approved serum tests for early detection of
the disease [1]. Given the considerable public health im-
portance of breast cancer, it is crucial to quickly identify
new biomarkers with the potential to enhance early diag-
nosis and to predict patient prognosis, drug resistance
development and treatment choice.

Blood based biomarkers have great potential in cancer
screening and their role could extend further from general
population risk assessment to treatment response evalu-
ation and recurrence monitoring. The rich content of
diverse cellular and molecular elements in blood, which
provide information about the health status of an individ-
ual, make it an ideal compartment to develop noninvasive
diagnostics for cancer [13]. However, despite a large litera-
ture collection related to biomarkers for common cancers,
blood based diagnostic tests that inform about the pres-
ence of cancer at an early stage and predict treatment
response have been difficult to develop [11, 14-16].

For the past decade, proteomics has been used for the
discovery of potential biomarkers from human fluids
including serum [4, 6, 17, 18]. So far, most efforts in pro-
teomics has been focused on the identification and
sequence annotation of the proteome by mass spectrom-
etry analyses of peptides derived through proteolytic pro-
cessing of the parent proteome [19]. In such a manner,
thousands of proteins have been identified from human
serum (www.serumproteome.org). However, no validated
protein biomarker currently exists for use in routine clin-
ical practice for breast cancer early detection, prognosis
and the prediction of treatment response. It is generally
recognized that sequence annotation alone cannot capture
this vital information, so new strategies are necessary.

Two-Dimensional (2-D) Gel Electrophoresis is a
powerful tool used to separate complex protein samples

Page 2 of 10

because more than 10,000 protein spots can be detected
with information on their relative abundance and post-
translational modifications. Recently, a modified 2-D Gel
Electrophoresis process was integrated with a special
protein elution and refolding process to achieve high
resolution of protein species from a proteome called
PEP [20]. Many of the fractions recovered by the PEP
technology with enzyme activity appear to contain just
one or two major proteins, making the positive identifi-
cation of the protein of interest relatively easy.

It is hypothesized that the levels and distributions of cer-
tain enzyme functions in serum could produce proteomic
features and collective profiles which reflect physiological
changes of an individual and can serve as possible bio-
markers or diagnostic parameters. Our earlier studies
using lung cancer patient serum and normal serum have
identified many fractions with metabolic enzyme activity
and the enzymes identified could serve as potential func-
tional biomarkers for the diagnostic of lung cancer [21]. In
the current study, we used both enriched serum samples
as well as original serum pools from breast cancer patients
and normal people for the systematic analysis of metabolic
enzyme and protease activities with the PEP technology.
In both type of samples, a large number of fractions with
metabolic enzymes and proteases were identified with sig-
nificant differences between breast cancer and normal
serum. We believe that the further identification and
validation of those functional proteins could lead to the
development of biomarkers for breast diagnosis.

Methods

Materials

All the chemicals were purchased from MilliporeSigma
(St. Louis, MO). Isoelectric Focusing (IEF) unit that is
capable of running IEF at different length is from Bio-
Rad (PROTEAN IEF Cell). Spectrophotometer Plate
Reader capable of reading 384-well plates with a wide
wavelength selection and fluorescence reading is the
SPECTRAMax Plus from Molecular Devices (Sunnydale,
CA). Semi-Blot unit for protein transfer such as Bio-
Rad’s Trans-Blot SD Semi-Dry Transfer Cell. AlbuVoid™
serum protein enrichment beads was from Biotech Sup-
port Group (Monmouth Junction, NJ). Protein Elution
Plate (PEP) is a product of Array Bridge (St. Louis, MO).

AlbuVoid™ treatment for low abundance serum protein
enrichment

200 mg of AlbuVoid™ beads were used to process 0.8 ml
of human serum (contains about 40 mg total serum pro-
tein). The breast cancer patient serum and the matching
normal people serum were collected at Zibo Central
Hospital in China after the approval from the Hospital
Ethics Committee with reference number of 20140102.
Serum samples from normal people or breast cancer
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patient were pooled with equal volume (100 ul each)
respectively and either used directly in the analysis or
enriched for low abundance serum proteins with Albu-
Void™ according to the manufacturer’s instruction before
loading to the IEF. The enriched low abundance serum
proteins were eluted with 0.8 ml elution solution
containing 8 M urea, 2% CHAPS in 25 mM phosphate
buffer, pH 8.0. The protein concentration was deter-
mined by BCA before 2-D gel electrophoresis.

Isoelectric focusing (IEF) and 2-D gel electrophoresis

To prepare for the IEF separation, Bio-Lyte Ampholyte
(Bio-Rad #1631112) was added to the serum solution dir-
ectly or AlbuVoid™ elute above with a final concentration
of 0.5%. Rehydration was using 0.4 ml sample solution
with nonlinear pH 3-10 11 cm IPG strip (Bio-Rad Ready-
Strip #1632016) overnight with a total loading of 1 mg
protein/IPG strip. In the experiments without AlbuVoid™
enrichment, 1 mg of serum protein from the pooled breast
cancer patient or unaffected individual was used directly
following the same sample preparation as described above.
All the enriched and unenriched serum proteins were sep-
arated in the same IEF run. The proteins were separated
using the following setting: 0—7000 linear gradient voltage
for 4 h hold at 7000 voltages overnight until running ter-
mination at room temperature. After IEF, the IPG strips
were taken off the running unit, mineral oil from the IPG
strip was absorbed with a paper towel and the IPG strip
was transferred to a 12-lane refolding tray (Bio-Rad
#1654025). 4 ml refolding solution was added to each lane
with the IPG strip and incubated for 10 min., which allows
the urea to diffuse out of the IPG strip and permits the
refolding of the protein., This was followed by incubation
in electrophoresis transfer buffer (Tris-glycine with 0.1%
SDS), which allows for the further diffusion of urea from
the IPG strip and the binding of SDS to the protein so that
all the proteins were negatively charged. For protein
refolding, a proprietary protein refolding solution was
used; the solution contains multiple metal elements to
replace the possible loss of metal ions as enzyme cofac-
tors. A redox system to mimic the cell cytoplasm was used
to assist the protein refolding process. After protein
refolding, the IPG strip was laid down to a precast 2-D gel
(Bio-Rad 10-20% Criterion Gel #3450107) with the acidic
end of the IPG on the left side of the 2-D gel when facing
the gel apparatus. The gel was operated at 80 V for 15 min.
followed by running at 120 voltages until the dye front of
the gel was 0.5 cm from the bottom edge of the gel.

Electroelution and protein recovery from the Protein
Elution Plate (PEP)

After second dimension gel electrophoresis, the gel was
taken out from the cassette, and laid on top of the PEP
plate which was filled with elution solution. The proteins
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were transferred from the gel to the PEP plate for
60 min. at 20 V using a Semi-Blot apparatus from Bio-
Rad (#1703940.). After protein transfer, the gel was care-
fully lifted from the PEP plate, and a multi-channel
pipette transferred the eluted proteins from the PEP
plate to a master plate which contained 50 pl PBS in
each well. About 40-45 pl of solution could be trans-
ferred from the PEP plate to the Master Plate for a total
volume of 90-95 pl in each well. In this analysis, 25 ul
solutions was taken from each well in the Master Plate
and transferred to an enzyme assay plate to perform the
enzyme assay.

Hexokinase activity assay
Hexokinase activity can be monitored by a cascade reaction
as follows:

Substrates added{D-Glucose + ATP}Hikim;Se Products
{D-Glucose 6-Phosphate + ADP}
D-Glucose 6-Phosphate + B-NADPﬂ 6-Phospho-D-Gluconate
+ 3-NADPH

In the final assay solution, glucose was at 216 mM;
MgCl2 at 7.8 mM, ATP at 0.74 mM and NADP at 1.1 mM.
25 ul of this enzyme assay solution was mixed with 25 ul of
sample from the Master Plate (described above) and the en-
zyme activity was monitored by the 340 nm absorbance
from the reduction of NADP to NADPH. The readings at
0, 1 h,, 2 h. was recorded for both the normal serum and
breast cancer patient serum sample. However, in lieu of
purified G-6-PDH, 0.25 mg/ml beef liver protein was used
as the source of Glucose-6-Phosphate Dehydrogenase (G-
6-PDH). The assay thus reports the additive contributions
of the endogenous hexokinase activity present in the beef
liver extract, and any exogenous activity from the presence
of test sera protein in the PEP plate, which may influence
the reduction of NAD or NADP (the reporting signal). In
light of the ambiguities that may arise from such a report-
ing system, the primary goal of this investigation was to
generate sufficient signal intensities and activity features
which could monitored and compared between the two
samples types within an ‘omics’ context. Therefore, this
broader spectrum assay was chosen that could potentially
detect the activities of downstream glycolytic and other
cross-regulating proteins from the test sera.

Protease activity
FITC-labeled casein was used as general protease sub-
strate at 0.5 mg/mL final concentration.

25 ul each of the PEP plate sample and substrate were
incubated at room temperature overnight in the dark,
after protease digestion, the casein was precipitated with
10% TCA (trichloroacetic acid) and the supernatant was
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neutralized with Tris base and used for the fluorescence
measurement.
Proteases Assay:

Proteases

Casein (substrate)-FITC ——Hydrolyzed Casein + FITC

Enzyme activity display

Two Microsoft Excel formats were used to display the
enzyme activities. One is to use the 3-D column display
and the other is to use the heat map.

Results

Comparison of hexokinase activity from normal serum
and breast cancer patient serum

Previous effort in proteomics has identified thousands
of proteins from human serum, a high percentage of
the proteins identified are enzymes with significant
numbers belongs to metabolic enzymes and proteases
(www.serumproteome.org). There have been many re-
ports of single or multiple protein panels as potential bio-
markers for breast cancer diagnosis, however so far there
are no routinely used serum-based biomarkers approved
for breast cancer [1]. As a successful diagnostic biomarker,
it will need to achieve a high level of sensitivity and speci-
ficity in its detection to minimize false negatives and false
positives respectively because a high proportion of those
false results have significant consequences both economic-
ally and also emotionally. During the development of
serum biomarkers, one of the challenges is the wide range
of physiological variations among the general population
which causes potential biomarkers to overlap between the
normal and patient group. In retrospective studies, a panel
of serum biomarkers are often identified with excellent
separation between the normal and disease group but
failed during the validation process using collected clinical
samples. In the current study, two aspects were unique: 1.
the search for possible biomarkers is from a new domain
of the serum proteome, i.e. the functional domain. It is
hoped that this new dimension of information can provide
a distinct signature for breast cancer when compared with
normal serum. 2. When selecting the biomarker candi-
dates, the effort was started with pooled serum instead of
individuals. In this approach, the individual physiological
variations of serum proteins from the normal or cancer
patients were averaged, which will partially reduce the
variations from the individuals and help identify those
proteins that showed significant differences between
the normal and disease groups. Once the potential bio-
marker(s) are identified, their discriminating power for
the normal and disease individuals will be tested during the
validation stage. 3. Only those fractions with qualitative dif-
ferences (the detected active fraction is totally missing from
a group) or 10-fold differences will be further investigated.
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This will increase the possibility of eventual validation
of the biomarker candida(s) in a large clinical sample
collection. To demonstrate that hexokinase activity can
be monitored from the PEP fractions, the reduction of
NADP was measured at different time points. As can
be seen in Figs. 1 and 2, many fractions from the normal
serum have time-dependent hexokinase activities. Similarly,
measurements on the serum from breast cancer patients
also showed many fractions with hexokinase activities, and
more interestingly, there are both qualitative and quantita-
tive differences between the normal serum and cancer pa-
tient serum. For example, in the normal serum, F2 and G2
have significant levels of hexokinase activity whereas the
corresponding fractions in the breast cancer patient serum
are at baseline levels; the same is true for fractions P1 and
P2. Conversely, from the breast cancer patient serum, frac-
tions K3, 17, J7 and H8 each have significant hexokinase ac-
tivities while the enzyme activity from the corresponding
fractions in the normal group only showed baseline levels
of activity (Fig. 2). As expected, those fractions with enzyme
activity showed a time-dependent activity increase (Figs. 1
and 2). Another area that showed a significant difference in
hexokinase activity was the high molecular weight region
with pl between 7 and 8 (see the boxed area in Fig. 2).
Interestingly, the fractions with hexokinase activity were de-
tected across a wide range of molecular size and isoelectric
points, suggesting that: 1.) there are many serum proteins
that could directly or indirectly impact hexokinase activities
within this assay system, and 2.) there could be protein vari-
ants that show different hexokinase activity among the
fractions.

Comparison of protease activity from normal serum and
breast cancer patient serum

Previous studies have shown that a large number of prote-
ases exist in the human serum. (www.serumproteome.org)
However, only a limited number of proteases were shown
to have enzymatic activities [22]. In this study, protease
activities were monitored systematically from the human
serum directly using the PEP technology. Multiple frac-
tions with protease activities were identified that showed
significant different between normal and breast cancer
patient serum (Fig. 3). The majority of the fractions with
protease activities were detected in the acidic protein
region (pl from 3 to 7) whereas very little activity was ob-
served in the basic protein region. For protease activity
detection, protein enrichment with AlbuVoid™ will make a
significant difference, the principle of AlbuVoid™ is to use
a chemically synthesized material to absorb serum pro-
teins except albumin, by allowing albumin to be specific-
ally wash off from the AlbuVoid™ column, the other low
abundance serum proteins are enriched on the column
and eluted with an elution solution ; details of the protease
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Fig. 1 Direct measurement of hexokinase activity from normal and breast cancer serum after PEP protein separation and elution (60 min). After elution of
proteins from the 2-D gel into the 384-well PEP plate, the eluted proteins were further transferred into a 384-well Master Plate with 50 pl refolding solution.
25 pl of the solution from the Master Plate was further transferred into a 384-well Enzyme Assay plate, 25 pl of hexokinase assay components were was
added to each well, the increase of OD 340 nm by NADP reduction was measured in a spectrophotometer, the OD readings were taken at 0 and 60 min.

the OD340 nm increase from 60 min. was calculated by subtracting the value from the 0 min. reading. Boxed fractions indicated samples of interest
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Fig. 2 Direct measurement of hexokinase activity from normal and breast cancer serum after PEP protein separation and elution (120 min). The
conditions were the same as in Fig. 1, the OD readings were taken at 0 and 120 min. the OD340 nm increase from 120 min. was calculated by
subtracting the value from the 0 min. reading. Boxed fractions indicated samples of interest
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Fig. 3 Direct measurement of protease activity from normal and breast cancer serum after PEP protein separation and elution. The conditions
were the same as in Fig. 1 except protease substrate was added to the assay plate. The assay was carried out at room temperature overnight, for
more details please refer to the material and method. Boxed fractions indicated samples of interest

activity analysis will be discussed in the later part of this
section.

Comparison of hexokinase activity from enriched normal
serum and breast cancer patient serum

Previous work in using AlbuVoid™ has demonstrated
that the profile of serum proteins and enzymatic activ-
ities will be changed significantly during the enrichment
[21, 23]. (In this study, it was shown that the depletion
of albumin can significantly enrich hexokinase activities
(Figs. 4 and 5). Compared with the direct serum assay
(Figs. 1 and 2), more fractions with hexokinase activities
were detected across a wide range of molecular weight
and isoelectric points (see Fig. 5 boxed). In the compari-
son of normal and breast cancer patient serum, many frac-
tions with both qualitative and quantitative hexokinase
activity differences were detected (see the boxed fractions

in Fig. 5 for details). This demonstrated that AlbuVoid™ is
a very effective tool for the enrichment of low abundancy
proteins with enzyme activity. As a result of this enrich-
ment, there are more candidate fractions to choose from
for further biological validation as potential biomarkers.

Comparison of protease activity from enriched normal
serum and breast cancer patient serum

The most dramatic difference for enzyme activity detection
in using the AlbuVoid™ for serum protein enrichment was
demonstrated in the case of protease activity analysis.
Figure 6 indicated that a large number of fractions were
shown to have protease activities after serum protein
enrichment. Compared with the direct serum proteinase
measurement (Fig. 3), both the levels and species of prote-
ases were increased significantly in the enriched serum
sample. The fact that very few fractions were detected
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with protease activity in the direct serum analysis sug-
gested that the protease levels in the serum were below
the detection threshold of protease activity method used
in this study, and it is necessary to use AlbuVoid™ to
enrich these low level proteases to bring them to a high
enough level to be detected.

Discussion

In US, breast cancer is the most commonly diagnosed
malignancies and the leading cause of cancer mortality
among women. Approximately 40,000 deaths from the
disease occur annually in the US. Worldwide, more than
450,000 deaths occur each year with 1,300,000 diagnosed
[24]. The main factor that contributes to breast cancer
mortality is the presence of metastasis. Of those diag-
nosed with breast cancer, 30 to 85% of the patients
already have bone metastases and the median survival
rate after diagnosis is 25 to 72 months. Human serum is
one of the bodily health windows from which the
homeostasis of the body can be monitored [13].

In human serum, more than 10,000 proteins have been
detected and thousands of them have been identified by
mass spectrometry. However, there is a bottleneck in the
further use of those serum proteins as potential bio-
markers: the clinical validation of the biomarker candi-
dates that meet the requirements of both sensitivity and

specificity. Given the cost of developing useful assays such
as monoclonal antibody-based immunoassays, it is not
practical to test the hypothesis on thousands of serum
proteins in a clinical setting. Therefore, different or more
efficient approaches should be considered in the efforts
for breast cancer biomarker discovery. Significant progress
has been made in the field of breast cancer biomarker dis-
covery in the past decade; however, the early accurate
detection of the disease remains a challenge [1, 2, 9, 10,
12, 25, 26]. In a recent review of potential biomarkers for
breast cancer, fifteen biomarkers with demonstrated
promise in initial studies were reported two of them are
for diagnosis and the rest are for prognosis [1]. In addition
to protein based biomarker candidates, miRNA and other
nucleic acid-based breast cancer biomarkers were also
reported recently but no validated biomarker currently
exists for use in routine clinical practice

It has long been recognized that cancer has significantly
different metabolic behavior when compared with normal
cells. Otto Warburg was the first to report the increased
metabolic glucose activity in cancer tissue [27, 28], and
there has been many reports linking increased meta-
bolic activities with cancer development in the past few
years [29-36]. As a result of extensive studies on cancer
metabolism, many compounds targeting various metabolic
enzymes are in different stages of clinical trials with some
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Fig. 5 Measurement of hexokinase activity from normal and breast cancer serum after AlbuVoid™ enrichment and PEP protein separation and
elution (120 min). The conditions were the same as in Fig. 4, hexokinase activity was measured by NADP reduction at 340 nm at 0 and 120 min, the
0D340 nm increase from 120 min. was calculated by subtracting the value from the 0 min. reading. Boxed fractions indicated samples of interest

encouraging efficacy. Up to now, most of the efforts in
serum breast cancer biomarker discovery has been fo-
cused on the level of proteins or protein post-translational
modifications [3-5, 13, 15, 37]. The goal is to find a
protein-based signature for the disease has only been met
with limited success. Since the human serum reflects the
homeostasis of the body, we hypothesized that among the
thousands of proteins identified, metabolic enzymes and
other functional proteins may provide a unique window to
look into the breast cancer status. Recently, a functional
proteomics technology was developed that can analyze the
function of serum proteins systematically after 2-D gel
electrophoresis [20]. Using this technology, it was demon-
strated that the activities of many metabolic enzymes
could be monitored from mouse cochleae tissue after drug
treatment, and that proteins with differential regulation
could be identified directly by mass spectrometry because
each fraction recovered in the PEP technology contained
just one or a few proteins, In a further study with human
lung cancer serum, it was shown that many fractions with
metabolic enzyme activities could be detected from lung
cancer patient serum [21]. In this further study, it was
demonstrated that many fractions with metabolic enzyme
activities or protease activities could be detected from nor-
mal and breast cancer patient serum with or without
AlbuVoidTM' protein enrichment. Comparison between
the direct serum analysis and the enriched serum analysis

showed that the number of active fractions and levels of en-
zymatic activities were significantly increased after protein
enrichment. This is not surprising given the high protein
concentration of the serum protein and the earlier finding
that human albumin is associated with many species of
serum proteins. First of all, since the principle of AlbuVoid™
serum low abundance protein enrichment is through avoid-
ing the binding of albumin to the column whereas proteins
other than albumin will bind any proteins with similar
biochemical properties as albumin could be in the flow-
through fraction. Secondly, as mentioned above, since
human albumin was found to be associated with large
amount of low abundance proteins, the avoidance of albu-
min would also exclude those proteins that bind to albu-
min. In spite of the impact on the serum protein
composition, the AlbuVoid™ enrichment is still a very ef-
fective method to enrich low abundance proteins from
human serum [23]. This is especially important for certain
functional enzymes because the detection and quantita-
tion of enzyme activity is proportional to the quantity of
the enzyme present and many enzymes may be below the
detection threshold of the assay limit. This was the case in
the protease activity assay as more and different
enzyme fractions were detected with the protein enrich-
ment (Figs. 3 and 6). It should be pointed out that in the
current study, the hexokinase assay system was designed to
detect any rate-limiting enzymes in the glycolytic pathway
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Fig. 6 Protease activity from normal and breast cancer serum after AlbuVoid™ enrichment and PEP protein separation and elution. The conditions
were the same as in Fig. 3 except the testing sample is from AlbuVoid™ enrichment. The assay was carried out at room temperature overnight,
for more details please refer to the material and method. Boxed fractions indicated samples of interest

because the first enzyme activity in the pathway, hexoki-
nase, was selected and beef liver extract was used as the
source of supporting enzymes for the assay. This design
was intended to detect as many active metabolic enzymes
from the serum as possible. Therefore, any glycolytic en-
zymes downstream of hexokinase could potentially enhance
hexokinase activity by removing downstream products
from the system. Because of this assay design, any down-
stream enzymes in the metabolic pathway could contribute
to the detected activity. Previous studies have identified a
large number of proteases from human serum through
mass spectrometry and a few proteases have been shown to
possess catalytic activity (www.serumproteome.org). In this
study, a large number of fractions with protease activity
were detected from human serum, and many differences
were identified between normal and cancer patient serum
(Figs. 3 and 6). As expected, there are more species of pro-
teases being detected in the enriched serum samples as
compared with the direct serum assay and the enzyme ac-
tivity levels for many fractions were also significantly
higher in the enriched samples. This suggested that for
the protease activity assay used in the study, many of the
serum proteases were below the detection or quantitation
threshold, and the use of an effective serum protein

method is critical to reveal the important information in
the functional aspects of proteins in the serum. In the
earlier studies, several other enzymes have been tested in
the PEP platform for serum proteins including protein
kinases, alkaline phosphatases, NADH or NADPH-
dependent oxidases and GAPDH [23]. In all the enzymes
analyzed, multiple fractions were detected with enzymatic
activities. Given the fact that most of the cellular proteins
have variants because of post-translational modifications,
it is possible that only one or a few protein variants
released by the cancer cells and survived in the serum
could retain a high correlation with human diseases.

Conclusions

In this study, multiple functional fractions with biomarker
candidates were identified for the first time from breast
cancer serum using the PEP technology. It is hoped that
the combination of methods for serum protein enrich-
ment and PEP technology, which allows functional pro-
teins to be molecularly profiled and compared, can help
discover new breast cancer biomarkers. Furthermore,
these same technologies can easily be extended for the
development of biomarkers, drug targets or diagnostic kits
for other types of cancer or diseases.


http://www.serumproteome.org/
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Abbreviation
PEP: Protein Elution Plate
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