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Abstract

Background: Mild cognitive impairment (MCI) is an intermediate state between normal aging and dementia
including Alzheimer’s disease. Early detection of dementia, and MCI, is a crucial issue in terms of secondary
prevention. Blood biomarker detection is a possible way for early detection of MCI. Although disease biomarkers are
detected by, in general, using single molecular analysis such as t-test, another possible approach is based on
interaction between molecules.

Results: Differential correlation analysis, which detects difference on correlation of two variables in case/control
study, was carried out to plasma microRNA (miRNA) expression profiles of 30 age- and race-matched controls and 23
Japanese MCI patients. The 20 pairs of miRNAs, which consist of 20 miRNAs, were selected as MCI markers. Two pairs
of miRNAs (hsa-miR-191 and hsa-miR-101, and hsa-miR-103 and hsa-miR-222) out of 20 attained the highest area
under the curve (AUC) value of 0.962 for MCI detection. Other two miRNA pairs that include hsa-miR-191 and
hsa-miR-125b also attained high AUC value of ≥ 0.95. Pathway analysis was performed to the MCI markers for further
understanding of biological implications. As a result, collapsed correlation on hsa-miR-191 and emerged correlation
on hsa-miR-125b might have key role in MCI and dementia progression.

Conclusion: Differential correlation analysis, a bioinformatics tool to elucidate complicated and interdependent
biological systems behind diseases, detects effective MCI markers that cannot be found by single molecule analysis
such as t-test.
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Background
Early detection of dementia is a crucial issue in terms of
secondary prevention. Mild cognitive impairment (MCI)
is an intermediate state between normal aging and demen-
tia including Alzheimer’s disease [1–3]. On average, more
than half MCI patients convert to dementia in 5 years, but
some MCI patients remain stable or recover to normal
over time [3–5]. This is why early detection and treatment
of MCI is incredibly important.
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Blood biomarkers can be useful for early detection of
MCI. The present study is based on the hypothesis that
neurite and synapse destruction, which are pathologic
processes characteristic of early stages of AD, other neu-
rodegenerative diseases, and MCI syndrome in general,
can be detected in vitro by quantitative analysis of brain-
enriched cell-free microRNA (miRNA) in the blood [6].
MiRNAs, a class of endogenous small non-coding RNAs,
mediate posttranscriptional regulation of protein-coding
genes by binding to the 3’ untranslated region of tar-
get mRNAs, leading to translational inhibition or mRNA
destabilization or degradation [7, 8]. Overall, the whole
human miRNA regulates greater than 60% of all protein-
coding genes [9]. Importantly, cell-free miRNA have been
shown to be stable in blood samples [10], and aberrant
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Table 1 Summary of participants in our study. Sample size, mean age and mean score of mini mental state exam (MMSE) are shown

Class Total Male Female

Age-matched controls # of Participants 30 12 18

(Nornal) Age 70.4 69.3 71.1

MMSE 28.6 28.9 28.4

MCI patients # of Participants 23 11 12

Age 72.8 70.8 74.6

MMSE 24.3 24.6 24.0

regulation of miRNA plays a central role in pathological
events underlying cancers and neurodegenerative diseases
[11–13].
A common statistical approach to detect disease

biomarkers is differential expression analysis usually
based on t-test between controls and patients [14].
Serum and plasma miRNA biomarkers for AD have
been detected by differential expression analysis [15, 16].
Although differential expression analysis is a single molec-
ular analysis, another possible approach is based on inter-
action between molecules. Such approaches, which are
based on the interaction between molecules, can detect
more stable and accurate biomarkers, since the interac-
tion is array- and kit-free: a difference in mean can be
easily affected by a small change in absolute expression
value, but the interaction-based approach can be robust
in that change. Differential correlation analysis (differen-
tial coexpression analysis, [17, 18]), an interaction-based
approach, finds different types of biomarkers in terms
of correlation change between controls and patients.

Differential correlation has been observed in AD and
cancers [19, 20].
In this paper, differential correlation analysis was car-

ried out to plasma miRNA expression profiles of 30 age-
matched controls and 23 MCI patients in Japan. Pathway
analysis was performed to the detected MCI biomarkers
for further understanding of biological implications of the
MCI markers.

Methods
Participants
The use of human volunteer in this study was approved
by the Ethical Review Board of Japan’s National Center for
Geriatrics and Gerontology (NCGG) and the Committee
of Medical Ethics of Hirosaki University School of
Medicine Institutional Review Board in Japan. We used
blood samples collected in NCGG Biobank and Hirosaki
University School of Medicine and Hospital. Written
informed consent was obtained from all participants or
their family prior to the study. The characteristics of the

Table 2 85 miRNAs in this study

hsa-let-7b hsa-miR-142-5p hsa-miR-186 hsa-miR-24 hsa-miR-374b

hsa-let-7d* hsa-miR-143 hsa-miR-18a hsa-miR-25 hsa-miR-378

hsa-let-7f hsa-miR-144 hsa-miR-191 hsa-miR-26a hsa-miR-423-3p

hsa-let-7g hsa-miR-145 hsa-miR-192 hsa-miR-26b hsa-miR-423-5p

hsa-let-7i hsa-miR-146a hsa-miR-197 hsa-miR-27a hsa-miR-424

hsa-miR-101 hsa-miR-148a hsa-miR-1979 hsa-miR-27b hsa-miR-425

hsa-miR-103 hsa-miR-148b hsa-miR-199a-3p hsa-miR-29a hsa-miR-425*

hsa-miR-106a hsa-miR-150 hsa-miR-199a-5p hsa-miR-29c hsa-miR-451

hsa-miR-107 hsa-miR-151-3p hsa-miR-19b hsa-miR-30b hsa-miR-484

hsa-miR-122 hsa-miR-151-5p hsa-miR-20a hsa-miR-30c hsa-miR-486-5p

hsa-miR-125b hsa-miR-152 hsa-miR-21 hsa-miR-30e hsa-miR-505

hsa-miR-126 hsa-miR-15a hsa-miR-22 hsa-miR-320a hsa-miR-590-5p

hsa-miR-126* hsa-miR-15b hsa-miR-221 hsa-miR-320b hsa-miR-652

hsa-miR-139-5p hsa-miR-16 hsa-miR-222 hsa-miR-324-3p hsa-miR-92a

hsa-miR-140-3p hsa-miR-17 hsa-miR-223 hsa-miR-335 hsa-miR-93

hsa-miR-140-5p hsa-miR-181a hsa-miR-23a hsa-miR-338-3p hsa-miR-99a

hsa-miR-142-3p hsa-miR-185 hsa-miR-23b hsa-miR-342-3p hsa-miR-99b
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participants are shown in Table 1: the participants were 30
age- and race-matched controls (Normal, 12 males and 18
females, mean age of 70.4) and 23 Japanese MCI patients
(11 males and 12 females, mean age of 72.8). In NCGG,
amnestic MCI (MCI) was diagnosed following the criteria
defined by Petersen et al. [5].

Sample preparation
Total RNA was extracted from plasma using the
miRNeasy Mini Kit (Qiagen) according to the manu-
facturer’s instructions with the following modifications.
Plasma was thawed on ice and centrifuged at 3000×g for
5 min in a 4 °C microcentrifuge. An aliquot of 200 μL
of plasma per sample was transferred to a new tube and
750 μL of Qiazol mixture containing 1.25 μg/mL of MS2
bacteriophage RNA (Roche Applied Science) was added
to the plasma. The tube was mixed and incubated for
5 min followed by the addition of 200 μL chloroform.
The tube was mixed, incubated for 2 min and centrifuged
at 12,000×g for 15 min in a 4 °C microcentrifuge. The
upper aqueous phase was transferred to a new microcen-
trifuge tube and 1.5 volume of 100% ethanol was added.
The contents were mixed thoroughly and 750 μL of the

sample was transferred to a Qiagen RNeasy Mini spin col-
umn in a collection tube followed by centrifugation at
15,000×g for 30 sec at room temperature. The process was
repeated until all remaining sample had been loaded. The
spin column was rinsed with 700 μL Qiagen RWT buffer
and centrifuged at 15,000×g for 1 min at room tempera-
ture followed by another rinse with 500 μL Qiagen RPE
buffer and centrifuged at 15,000×g for 1min at room tem-
perature. A rinse step (500 μL Qiagen RPE buffer) was
repeated twice. The spin column was transferred to a new
collection tube and centrifuged at 15,000×g for 2 min at
room temperature. The spin column was transferred to a
new microcentrifuge tube and the lid was left open for 1
min to allow the column to dry. Total RNA was eluted by
adding 50 μL of RNase-free water to the membrane of the
spin column and incubating for 1 min before centrifuga-
tion at 15,000×g for 1min at room temperature. The RNA
was stored in a –80 °C freezer.

microRNA real-time qPCR
For reverse transcription, 19.2 μL of RNA eluate was
used in total 80 μL reactions with the miRCURY
LNA™Universal RT cDNA synthesis kit (Exiqon). The

Table 3 Summary of the 20 pairs of miRNAs detected by differential correlation between Normal and MCI. The miRNA pairs are ranked
by the difference of the correlation coefficients. The mean AUC value for the 20 miRNA pairs is 0.800 ± 0.051

Rank Pair of miRNAs |r1 − r2| log10 AUC Correlation Coefficients
p-value Normal (r1) MCI (r2)

1 hsa-miR-191 hsa-miR-590-5p 0.963 -3.76 0.880 0.764 -0.200

2 hsa-miR-125b hsa-miR-18a 0.930 -3.55 0.733 -0.218 0.712

3 hsa-miR-140-3p hsa-miR-191 0.921 -2.85 0.800 0.540 -0.381

4 hsa-miR-103 hsa-miR-19b 0.917 -3.56 0.797 0.776 -0.141

5 hsa-miR-192 hsa-miR-197 0.912 -3.61 0.867 -0.281 0.631

6 hsa-miR-191 hsa-miR-19b 0.911 -4.10 0.854 0.826 -0.085

7 hsa-miR-152 hsa-miR-191 0.892 -3.42 0.863 0.772 -0.121

8 hsa-miR-103 hsa-miR-590-5p 0.888 -3.24 0.749 0.614 -0.275

9 hsa-miR-191 hsa-miR-320a 0.873 -3.38 0.872 0.691 -0.182

10 hsa-miR-125b hsa-miR-20a 0.871 -3.80 0.801 -0.090 0.781

11 hsa-miR-106a hsa-miR-125b 0.869 -3.94 0.785 -0.083 0.786

12 hsa-miR-101 hsa-miR-103 0.865 -3.65 0.768 0.805 -0.060

13 hsa-miR-125b hsa-miR-24 0.840 -3.42 0.801 -0.073 0.768

14 hsa-miR-101 hsa-miR-191 0.831 -3.96 0.871 0.822 -0.009

15 hsa-miR-103 hsa-miR-222 0.828 -3.24 0.745 0.622 -0.207

16 hsa-miR-197 hsa-miR-378 0.820 -2.78 0.810 -0.234 0.586

17 hsa-miR-103 hsa-miR-223 0.815 -3.79 0.786 0.840 0.025

18 hsa-miR-125b hsa-miR-223 0.815 -3.49 0.765 -0.015 0.800

19 hsa-let-7b hsa-miR-125b 0.811 -3.75 0.718 -0.056 0.755

20 hsa-miR-125b hsa-miR-484 0.801 -3.52 0.739 -0.078 0.723

Bold: top five miRNAs
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Fig. 1 Scatterplots and ROC curves for top five miRNA pairs selected by differential correlation analysis. Left: Normal,Middle: MCI, Right: ROC curve
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cDNA products were diluted 57.25 fold (80 μL cDNA
reactions + 4500 μL water) and assayed in 10 μL
PCR reactions according to the protocol for the miR-
CURY LNA™Universal RT microRNA PCR System; each
microRNA was assayed once by qPCR on the microRNA
Ready-to-Use PCR, Human panel I and panel II, V2.
Negative controls excluding template from the reverse
transcription reaction were assayed and profiled in the
same manner of the other samples. The amplification was
performed in a LightCycler®480 Real-Time PCR System

(Roche) in 384 well plates. The amplification curves were
analyzed using the Roche LC software (ver. 1.5), both for
determination of Cp (by the second derivative method)
and for melting curve analysis.

Data filtering
The raw data was extracted from the Light cycler 480
software. The GenEx software (Exiqon) was used for data
filtering analysis. Any assay data value must be detected
below Cp <37 or at least 3 Cp lower than negative

Fig. 2 Correlation networks for the 20 miRNAs detected by differential correlation analysis. Each box indicates a miRNA with the alphabet in Table 5.
For example, A: hsa-miR-191, B: hsa-miR-590-5p, C: hsa-miR-125b, D: hsa-miR-18a, E: hsa-miR-140-3p and F: hsa-miR-103. The 10 miRNAs (A, B, E, F, G,
J, K, N, P, R) and the 11 miRNAs (C, D, H, I, L, M, N, O, Q, R, S, T) are highly correlated with each other in Normal and MCI, respectively. Upper: all edges
with the correlation coefficient of |r| > 0.40. Lower: the edges with the correlation coefficient of |r| > 0.40 only for differentially correlated miRNA
pairs in Table 3. Solid and broken lines indicate positive and negative correlations, respectively
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control value to be included in the data analysis. Data that
did not pass these criteria were omitted from any fur-
ther analysis. The amplification efficiency was calculated
using the LinRegPCR software. Reactions with amplifi-
cation efficiency below 1.6 were also removed. All data
was normalized to the average of assays detected in each
sample (-dCp= average Cp [<37] – assay Cp). We then
adopted 85 miRNAs out of 745 (Table 2) detected in over
80% samples in either one of the compared two con-
ditions followed by filtering out low expression values
(<20%).

Differential correlation analysis
Effective MCI markers can be found by differential cor-
relation analysis, which investigates the difference of cor-
relation coefficients between two classes of controls and
MCI patients. In differential correlation analysis in our
study, all possible miRNA pairs are ranked by the differ-
ence of two correlation coefficients

|r1 − r2|, (1)

where r1, r2 are Spearman’s rank correlations of a miRNA
pair for controls and MCI patients, respectively. MiRNA

pairs with a high score of (1) are candidates of MCI
markers.
Differential correlation analysis in our study also pro-

vides the p-value of a pair of miRNAs as a reference
for statistical significance of the difference of correlation
coefficients. For this purpose, normalized rank correlation
[21, 22], rn, is utilized as a robust and Pearson-type corre-
lation coefficient:

rn =
∑

i �
−1{Ri/(n + 1)} �−1{Qi/(n + 1)}

∑
i
[
�−1{i/(n + 1)}]2

, (2)

where � is the distribution function of the standard nor-
mal distribution and Ri and Qi are the ranks of the
expression values xi and yi of two miRNAs, respectively.
In our study, the value of normalized rank correlation
rn is quite similar with that of Spearman rank corre-
lation: the mean of the difference between normalized
rank correlations and Spearman’s rank correlations for all
miRNA pairs was only 0.001 in our data set. Hypothesis
testing to investigate the equality of two normalized rank
correlation coefficients is then applied according to a like-
lihood ratio test in [23, 24]. The p-value can be calculated
through the hypothesis testing. We used Spearman’s rank
correlation for the difference calculation on correlation

Table 4 Summary of the top 10 two-pairs of miRNAs out of the 20 miRNA pairs detected by differential correlation analysis in Table 3.
The two-pairs of miRNAs are ranked by AUC value

Rank AUC Original Original Two-pairs of miRNAs Correlation Coefficients
Rank* AUC* Normal (r1) MCI (r2)

1 0.962 14 0.871 hsa-miR-101 hsa-miR-191 0.822 -0.009

15 0.745 hsa-miR-103 hsa-miR-222 0.622 -0.207

2 0.959 5 0.867 hsa-miR-192 hsa-miR-197 -0.281 0.631

14 0.871 hsa-miR-101 hsa-miR-191 0.822 -0.009

3 0.958 6 0.854 hsa-miR-191 hsa-miR-19b 0.826 -0.085

17 0.786 hsa-miR-103 hsa-miR-223 0.840 0.025

4 0.957 1 0.880 hsa-miR-191 hsa-miR-590-5p 0.764 -0.200

17 0.786 hsa-miR-103 hsa-miR-223 0.840 0.025

5 0.957 14 0.871 hsa-miR-101 hsa-miR-191 0.822 -0.009

16 0.810 hsa-miR-197 hsa-miR-378 -0.234 0.586

6 0.952 12 0.768 hsa-miR-101 hsa-miR-103 0.805 -0.060

13 0.801 hsa-miR-125b hsa-miR-24 -0.073 0.768

7 0.951 5 0.867 hsa-miR-192 hsa-miR-197 -0.281 0.631

9 0.872 hsa-miR-191 hsa-miR-320a 0.691 -0.182

8 0.951 14 0.871 hsa-miR-101 hsa-miR-191 0.822 -0.009

17 0.786 hsa-miR-103 hsa-miR-223 0.840 0.025

9 0.951 1 0.880 hsa-miR-191 hsa-miR-590-5p 0.764 -0.200

15 0.745 hsa-miR-103 hsa-miR-222 0.622 -0.207

10 0.947 4 0.797 hsa-miR-103 hsa-miR-19b 0.776 -0.141

14 0.871 hsa-miR-101 hsa-miR-191 0.822 -0.009

*: Original rank and AUC of each pair of miRNAs in Table 3. Bold: top five miRNAs
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coefficients (1) and used the normalized rank correlation
for p-value calculation.
Evaluation of the performance of a miRNA pair as MCI

marker is not straight-forward. We here apply receiver-
operator characteristic (ROC) analysis on logistic regres-
sion with an interaction term of two miRNAs:

log
p

1 − p
= β0 + β1X1 + β2X2 + β12X1X2 (3)

where p is the probability that a sample is in MCI class,
β0,β1,β2,β12 are regression coefficients andX1,X2 are the
expression value of two miRNAs, respectively. The inter-
action term β12X1X2 is essential for the evaluation of two
miRNAs detected by differential correlation analysis. If
the correlation coefficient between X1 and X2 is altered
between controls andMCI class, then the interaction term
significantly affects the discrimination of MCI from con-
trols. The area under the curve (AUC) value (=0 to 1) is
estimated through ROC analysis based on the estimated
probabilities p̂1, ...., p̂n for all samples of controls and MCI
patients. If the estimated probabilities for controls and
MCI patients are much different (e.g., p̂ < 0.5 for con-
trols and p̂ > 0.5 for MCI patients), then AUC value will
be 1 (completely separated). In order to evaluate of the
performance of several pairs of miRNAs as MCI markers,
logistic regression with multiple interaction terms can be
available:

log
p

1 − p
= β0 + β1X1 + β2X2 + . . .

+ βkXk +
∑

(i,j)∈C
βijXiXj

(4)

where C is a set of miRNA pairs that are differentially
correlated between controls and MCI patients. For exam-
ple, four miRNA pairs (miRNA 1-2, 1-3, 3-4 and 4-5)
with five miRNAs can be incorporated in the logistic
regression model, log p/(1 − p) = β0 + β1X1 + β2X2 +
β3X3 + β4X4 + β5X5 + β12X1X2 + β13X1X3 + β34X3X4 +
β45X4X5, where C = {(1, 2), (1, 3), (3, 4), (4, 5)} in the
interaction terms

∑
(i,j)∈C βijXiXj. ROC analysis evaluates

the performance of the five miRNAs as MCI markers
simultaneously.

Results
Differential correlation analysis
Differential correlation analysis was applied to the data set
with 85 miRNAs for age-matched samples of 30 controls
and 23 MCI patients (Tables 1 and 2). The 3570 possib
le pairs from the 85 miRNAs were ranked, according to
the difference of correlation coefficients between controls
andMCI patients. The 20 pairs of miRNAs, which had the
difference of correlation coefficients of |r1 − r2| > 0.8,
were selected as biomarkers that distinguish MCI patients

from controls (Table 3). The AUC value by each of the
20 miRNA pairs was 0.800 ± 0.051 ranged between 0.718
and 0.880. Figure 1 shows scatterplots and ROC curves
for each of top five miRNA pairs selected by differential
correlation between normal and MCI (see also Additional
file 1 for the remained miRNA pairs). Figure 2 shows
correlation networks of the 20 miRNA pairs.
AUC value for all two-pairs of the 20 miRNA pairs

was also calculated by using (4). Table 4 shows sum-
mary of the top 10 two-pairs of miRNAs out of 190
possible pairs. Two miRNA pairs (hsa-miR-191 and hsa-
miR-101, and hsa-miR-103 and hsa-miR-222) attained the
highest AUC value of 0.962 for MCI detection (Fig. 3).
Other two miRNA pairs that include hsa-miR-191 and
hsa-miR-125b also attained high AUC value of ≥ 0.95
(Table 4).

Pathway analysis
We performed Ingenuity Pathway Analysis (IPA) about
correlation networks to be lost and emerged in the MCI.
Figures 4 and 5 show estimated networks through IPA on
the 10 and 11 miRNAs, which are highly correlated with
each other in Normal and MCI respectively. IPA revealed
that the 10 highly correlated miRNAs in Normal were
composed of networks surrounding Akt, IGF1, PPARA,
IL6 and AGO2 genes. The IPA showed that TP53 genes
directly regulated all of 11 highly correlated miRNAs in
MCI. Pathways enriched for target genes of 10/11 highly

Fig. 3 ROC curve based on the top two-pairs of miRNAs with four
miRNAs (hsa-miR-191, hsa-miR-101, hsa-miR-103 and hsa-miR-222)
selected by differential correlation analysis. The four miRNAs attained
the highest AUC value of 0.962
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Fig. 4 An estimated network through IPA on the 10 highly correlated miRNAs in Normal. Genes/miRNAs directly (solid arrow) and indirectly (broken
arrow) interacted with them

correlated miRNAs in Normal/MCI are shown in Tables 6
and 7.

T-test
Traditional t-test was applied to the same data set with 85
miRNAs for age-matched samples of 30 controls and 23

MCI patients (Tables 1 and 2). The detail was described
in Additional file 2. The 22 miRNAs out of 85 were
detected as MCI markers (Table 5 and Additional file 2).
The AUC value by each of the 22 miRNAs was 0.784 ±
0.017 ranged between 0.748 and 0.828. Importantly, dif-
ferential correlation analysis detected much different and
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Fig. 5 An estimated network through IPA on the 11 highly correlated miRNAsin MCI. Genes/miRNAs directly (solid arrow) and indirectly (broken
arrow) interacted with them

more sensitive MCI markers compared to t-test (Table 5):
mean AUC value = 0.800 ± 0.051 (differential correlation
analysis), = 0.784 ± 0.017 (t-test). Also, the highest AUC
value of any four miRNAs from the 22 miRNAs (Figure 4
in Additional file 2) was less than the highest in the two-
pair approach, which investigate the performance of three
to four miRNAs simultaneously, in differential correlation
analysis.

Discussion
Pathway analysis, IPA, allows us for further understand-
ing of biological implications of the detected 20 MCI

maker pairs of miRNA. Validation study and brain-based
previous studies can support the results of differential
correlation analysis and IPA.
IPA showed that 10 highly correlated miRNAs in Nor-

mal were composed of networks surrounding Akt, IGF1,
PPARA, IL6 and AGO2 genes (Fig. 4). Akt, IGF1 and
Irs3 are key molecules in insulin signaling pathway and
PPARA is a regulator of lipid metabolism. Moreover,
insulin, mTOR and PI3K-Akt signaling pathway were
ranked among top 5 analyzed by DIANA-miRPath, which
predicted miRNA targets through DIANA-microT-CDS
and combined their interactions into KEGG pathway
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Table 5 The two sets of miRNAs detected by Left: differential correlation analysis and Right: t-test

Differential correlation t-test
20 miRNAs 22 miRNAs

A: hsa-miR-191 L: hsa-miR-20a hsa-miR-151-3p hsa-miR-15b

B: hsa-miR-590-5p M: hsa-miR-106a hsa-miR-126* hsa-let-7d*

C: hsa-miR-125b N: hsa-miR-101 hsa-miR-23a hsa-miR-197

D: hsa-miR-18a O: hsa-miR-24 hsa-miR-27b hsa-miR-30b

E: hsa-miR-140-3p P: hsa-miR-222 hsa-miR-146a hsa-miR-185

F: hsa-miR-103 Q: hsa-miR-378 hsa-miR-30c hsa-miR-191

G: hsa-miR-19b R: hsa-miR-223 hsa-miR-151-5p hsa-miR-26b

H: hsa-miR-192 S: hsa-let-7b hsa-miR-23b hsa-miR-223

I: hsa-miR-197 T: hsa-miR-484 hsa-miR-92a hsa-miR-26a

J: hsa-miR-152 hsa-miR-24 hsa-miR-16

K: hsa-miR-320a hsa-miR-144 hsa-let-7f

Bold: top five miRNAs in each analysis
Underline: same miRNAs in left and right sides
The alphabets in the left side are utilized in Fig. 2

Table 6 Pathways enriched for target genes of 10 highly correlated miRNAs in Normal

# KEGG pathway p-value #genes #miRNAs

1 Pathways in cancer (hsa05200) 2.13 ×10−19 101 9

2 Prostate cancer (hsa05215) 3.39 ×10−17 35 9

3 PI3K-Akt signaling pathway (hsa04151) 1.92 ×10−15 94 9

4 mTOR signaling pathway (hsa04150) 6.11 ×10−14 27 9

5 Insulin signaling pathway (hsa04910) 1.18 ×10−13 46 8

6 Endometrial cancer (hsa05213) 4.34 ×10−13 22 9

7 Ubiquitin mediated proteolysis (hsa04120) 6.03 ×10−13 46 10

8 Focal adhesion (hsa04510) 5.48 ×10−12 60 9

9 Non-small cell lung cancer (hsa05223) 5.16 ×10−10 21 8

10 Hedgehog signaling pathway (hsa04340) 6.68 ×10−10 20 7

Table 7 Pathways enriched for target genes of 11 highly correlated miRNAs in MCI

# KEGG pathway p-value #genes #miRNAs

1 MAPK signaling pathway (hsa04010) 1.81 ×10−13 79 11

2 Endocytosis (hsa04144) 5.43 ×10−12 63 10

3 TGF-beta signaling pathway (hsa04350) 5.43 ×10−12 31 10

4 PI3K-Akt signaling pathway (hsa04151) 3.88 ×10−10 91 11

5 Pathways in cancer (hsa05200) 4.62 ×10−10 92 11

6 Neurotrophin signaling pathway (hsa04722) 5.66 ×10−8 38 11

7 Prostate cancer (hsa05215) 6.03 ×10−8 30 10

8 Ubiquitin mediated proteolysis (hsa04120) 1.37 ×10−7 41 11

9 ErbB signaling pathway (hsa04012) 5.11 ×10−7 29 10

10 Hepatitis B (hsa05161) 6.96 ×10−7 41 11
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(Table 6). These pathways included target genes of
9 miRNAs except for miR-191. Previous studies con-
sistently reported that identified biomarkers, changed
genes and networks in AD patients or AD model were
involved in insulin-related signaling [8, 25, 26]. Indeed,
experimentally validated evidences support key role of
miR-103a-3p, miR-320a and miR-590-5p in metabolic
pathway [27, 28] and miR-103a-3p association with AD
[29–31]. In Fig. 2, we found that miR-103a-3p and
miR-191 served as hub miRNAs of 12 edges of pair
correlations in Normal. miR-191 is also a widely used
biomarker for diseases like cancers, type-2 diabetes and
AD [32]. Considering the significant upregulation of
miR-191 in MCI (t-test), these findings supposed that
MCI stage lost miRNA correlations as cause and/or
effect of changed expression balance among miR-191
and members in insulin related signaling. Lost of
their correlation could become a discriminative marker
for MCI.
There are newly emerged correlation network with

a hub miRNA, miR-125b in MCI patient plasma. The
IPA showed that TP53 genes directly regulated all of 11
highly correlated miRNAs in MCI (Fig. 5). TP53 has been
explored originally as a tumor suppressor, but recently
reported about other aspects to control diseases such
as aging and metabolism [33]. There are accumulated
studies that the change of TP53 protein, its modification
and conformation were observed in AD patient brains
[34–36] and blood [37]. Intriguingly, Le et al. demon-
strated that miR-125b bound to 3’ untranslated region of
TP53 mRNA and worked as a negative regulator of TP53
[38], which means a possible presence of negative feed-
back loop. The result of DIANA-miRPath indicated that
MAPK, TGF-beta and Neurotrophin signaling pathway
were characteristic in MCI, although there were over-
lapped pathways in Normal and MCI (Table 7). Similarly
to TP53 signaling, these pathways have common biolog-
ical functions such as cell survival, cell cycle and apop-
tosis. In this study, change of TP53 function might be
detected as generated new correlations of the downstream
miRNAs.
This study focuses on biomarker detection for MCI, not

on mechanism that how were plasma miRNAs produced
from brain. However, brain-based studies also support
reliability of hsa-miR-191 and hsa-125b as MCI markers.
For example, expression change of miR-191 is required
for maintenance of spine restructuring in mouse hip-
pocampus [39], and miR-125b effects on dendritic spine
morphology and synaptic physiology in hippocampal neu-
rons of mouse [40], where it has been shown thatMCI and
AD is a synaptic failure [41–43].
In summary, collapsed correlation on hsa-miR-191 and

emerged correlation on hsa-miR-125bmight have key role
in MCI, and dementia progression.

Conclusions
Differential correlation analysis, which detects difference
of correlation in case/control study, was carried out to
plasma miRNA expression profiles of 30 age- and race-
matched controls and 23 Japanese MCI patients. The 20
miRNA pairs were selected as biomarkers for MCI. The
20miRNAs were more sensitive and different from that by
t-test.
Pathway analysis showed that, in particular, collapsed

correlation on hsa-miR-191 and emerged correlation on
hsa-miR-125b might have key role in MCI, and dementia
progression. Differential correlation analysis detects effec-
tive MCI markers that cannot be found by single molecule
analysis such as t-test. Also, differential correlation anal-
ysis could be a key bioinformatics tool to find sensitive
biomarkers and to elucidate complicated biological sys-
tems behind diseases.
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